搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

熔体旋甩法合成n型(Bi0.85Sb0.15)2(Te1-xSex)3化合物的微结构及热电性能

王善禹 谢文杰 李涵 唐新峰

引用本文:
Citation:

熔体旋甩法合成n型(Bi0.85Sb0.15)2(Te1-xSex)3化合物的微结构及热电性能

王善禹, 谢文杰, 李涵, 唐新峰

Microstructures and thermoelectric properties of n-type melting spun(Bi0.85Sb0.15)2(Te1-xSex)3 compounds

Wang Shan-Yu, Xie Wen-Jie, Li Han, Tang Xin-Feng
PDF
导出引用
  • 采用熔体旋甩结合放电等离子烧结(MS-SPS)技术制备了单相n型四元(Bi0.85Sb0.15)2(Te1-xSex)3(x=0.15,0.17,0.19,0.21)化合物,并对所得样品的微结构和热电传输性能进行了系统研究.样品自由断裂面的场发射扫描电子显微镜及抛光面的背散射电子成分分析表明:块体材料晶粒细小,晶粒排列紧密,成分分布均匀且相结构单一,样品中存在大量10—100 nm的层状结构.随着Se含量x的增加,样品的电导率和热导率逐渐增加,而Seebeck系数逐渐降低.相比商业应用的区熔材料,MS-SPS方法合成的高Se组成的样品均在425 K后表现出更高的ZT值,其中 (Bi0.85Sb0.15)2(Te0.83Se0.17)3样品具有最高的ZT值,在360 K可达到0.96,并在320—500 K均保持较高的ZT值,500 K时其ZT值相比区熔材料提高了48%.此外,通过调节Se的含量,可以有效地调控材料的ZT峰值出现的温度段,这对多级或梯度热电器件的制备具有重要意义.
    The single phase n-type (Bi0.85Sb0.15)2(Te1-xSex)3(x=0.15, 0.17, 0.19, 0.21)compounds have been synthesized by melt-spinning combined with subsequent spark plasma sintering technique, and the microstructures and thermoelectric transport properties of the bulk materials have been systematically investigated. The results of field emitted scanning electron microscopy images show that the bulk materials possess refined crystalline and a large number of layered structures with the sizes from 10 nm to 100 nm, and their differences in composition and phase are detected neither from the back scattering image nor from element face distributing images of polishing surface. With the increase of content of selenium, the electrical conductivity and the thermal conductivity increase but the Seebeck coefficient decreases. Comparing with the traditional zone melted material, the samples with higher selenium content possesse higher thermoelectric optimum value ZT after 420 K and the highest ZT of the sample (Bi0.85Sb0.15)2(Te0.83Se0.17)3 can reach 0.96 at 360 K, whose ZT increases by 48% at 500 K correspondingly. In addition, the temperature of the peak ZT can be adjusted by varying the content of selenium, which is meaningful for the design and the fabrication of multi-scale or grade thermoelectric device.
    • 基金项目: 国家重点基础研究发展计划(批准号:2007CB607501)和国家自然科学基金(批准号:50672118, 50731006)资助的课题.
    [1]

    Jiang J, Xu G J, Cui P, Chen L D 2006 Acta Phys. Sin. 55 4849 (in Chinese) [蒋 俊、 许高杰、 崔 平、 陈立东 2006 物理学报 55 4849]

    [2]

    Lan Y C, Minnich M J, Chen G, Ren Z F 2010 Adv. Funct. Mater. 20 357

    [3]

    Chen G, Dresselhaus M S, Dresselhaus G, Fleurial J P, Caillat T 2003 Int. Mater. Rev. 48 45

    [4]

    Rowe D M 1995 CRC Handbook of Thermoelectrics (New York: CRC Press) chap 27

    [5]

    Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043

    [6]

    Nolas G S, Goldsmid H J 2002 Phys. Stat. Sol. A 194 271

    [7]

    Li C D, Tian X L, Chen X C, Ilinsky A G, Shi L K 2005 J. Mater. Sci. Technol. 21 135

    [8]

    Xie W J, Tang X F, Yan Y G, Zhang Q J, Tritt T M 2009 Appl. Phys. Lett. 94 102111

    [9]

    Poudel B, Hao Q, Ma Y, Lan Y C, Minnich A, Yu B, Yan X, Wang D Z, Muto A, Vashaee D, Chen X Y, Liu J M, Dresselhaus M S, Chen G, Ren Z F 2008 Science 320 634

    [10]

    Cao Y Q, Zhao X B, Zhu T J, Zhang X B, Tu J P 2008 Appl. Phys. Lett. 92 143106

    [11]

    Ovsyannikov S V, Shchennikov V V, Vorontsov G V, Manakov A Y, Likhacheva A Y, Kulbachinskii V A 2008 J . Appl. Phys. 104 053713

    [12]

    Chen Z C, Suzuki K, Miura S, Nishimura K, Ikeda K 2008 Mater. Sci. Eng. A 500 70

    [13]

    Tang X F, Xie W J, Li H, Zhang Q J 2007 Appl. Phys. Lett. 90 012102

    [14]

    Xie W J, Tang X F, Yan Y G, Zhang Q J, Tritt T M 2009 J . Appl. Phys. 105 113713

    [15]

    Tang X F, Chen L D, Goto T, Hirai T, Yuan R Z 2001 Acta Phys. Sin. 50 1560 (in Chinese) [唐新峰、 陈立东、 後藤孝、 平井敏雄、 袁润章 2001 物理学报 50 1560] 〖16] Cao W Q, Yan Y G, Tang X F 2010 Acta Phys. Sin. 59 630 (in Chinese) [曹卫强、 鄢永高、 唐新峰 2010 物理学报 59 630 ]

    [16]

    Tkatch V I, Limanovskii A I, Denisenko S N, Rassolov S G 2002 Mater. Sci. Eng. A 323 91

    [17]

    Liao C L, Wu L C 2009 Appl. Phys. Lett. 95 052112

    [18]

    Sootsman J R, Chung D Y, Kanatzidis G K 2009 Angew. Chem. Int. Ed. 48 8616

    [19]

    Snyder G F, Toberer E S 2008 Nat. Mater. 7 105

    [20]

    Pichanusakorn P, Bandaru 2010 Mater. Sci. Eng. R 67 19

    [21]

    Jiang J 2005 Ph. D. Dissertation (Shanghai: Shanghai Institute of Ceramic, Chinese Academy of Sciences) (in Chinese) [蒋 俊 2005 博士学位论文 (上海: 中国科学院上海硅酸盐研究所)]

    [22]

    Tang X F, Chen L D, Goto T, Hirai T, Yuan R Z 2000 Acta Phys. Sin. 49 1120 (in Chinese) [唐新峰、 陈立东、 後藤孝、 平井敏雄、 袁润章 2000 物理学报 49 1120]

  • [1]

    Jiang J, Xu G J, Cui P, Chen L D 2006 Acta Phys. Sin. 55 4849 (in Chinese) [蒋 俊、 许高杰、 崔 平、 陈立东 2006 物理学报 55 4849]

    [2]

    Lan Y C, Minnich M J, Chen G, Ren Z F 2010 Adv. Funct. Mater. 20 357

    [3]

    Chen G, Dresselhaus M S, Dresselhaus G, Fleurial J P, Caillat T 2003 Int. Mater. Rev. 48 45

    [4]

    Rowe D M 1995 CRC Handbook of Thermoelectrics (New York: CRC Press) chap 27

    [5]

    Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043

    [6]

    Nolas G S, Goldsmid H J 2002 Phys. Stat. Sol. A 194 271

    [7]

    Li C D, Tian X L, Chen X C, Ilinsky A G, Shi L K 2005 J. Mater. Sci. Technol. 21 135

    [8]

    Xie W J, Tang X F, Yan Y G, Zhang Q J, Tritt T M 2009 Appl. Phys. Lett. 94 102111

    [9]

    Poudel B, Hao Q, Ma Y, Lan Y C, Minnich A, Yu B, Yan X, Wang D Z, Muto A, Vashaee D, Chen X Y, Liu J M, Dresselhaus M S, Chen G, Ren Z F 2008 Science 320 634

    [10]

    Cao Y Q, Zhao X B, Zhu T J, Zhang X B, Tu J P 2008 Appl. Phys. Lett. 92 143106

    [11]

    Ovsyannikov S V, Shchennikov V V, Vorontsov G V, Manakov A Y, Likhacheva A Y, Kulbachinskii V A 2008 J . Appl. Phys. 104 053713

    [12]

    Chen Z C, Suzuki K, Miura S, Nishimura K, Ikeda K 2008 Mater. Sci. Eng. A 500 70

    [13]

    Tang X F, Xie W J, Li H, Zhang Q J 2007 Appl. Phys. Lett. 90 012102

    [14]

    Xie W J, Tang X F, Yan Y G, Zhang Q J, Tritt T M 2009 J . Appl. Phys. 105 113713

    [15]

    Tang X F, Chen L D, Goto T, Hirai T, Yuan R Z 2001 Acta Phys. Sin. 50 1560 (in Chinese) [唐新峰、 陈立东、 後藤孝、 平井敏雄、 袁润章 2001 物理学报 50 1560] 〖16] Cao W Q, Yan Y G, Tang X F 2010 Acta Phys. Sin. 59 630 (in Chinese) [曹卫强、 鄢永高、 唐新峰 2010 物理学报 59 630 ]

    [16]

    Tkatch V I, Limanovskii A I, Denisenko S N, Rassolov S G 2002 Mater. Sci. Eng. A 323 91

    [17]

    Liao C L, Wu L C 2009 Appl. Phys. Lett. 95 052112

    [18]

    Sootsman J R, Chung D Y, Kanatzidis G K 2009 Angew. Chem. Int. Ed. 48 8616

    [19]

    Snyder G F, Toberer E S 2008 Nat. Mater. 7 105

    [20]

    Pichanusakorn P, Bandaru 2010 Mater. Sci. Eng. R 67 19

    [21]

    Jiang J 2005 Ph. D. Dissertation (Shanghai: Shanghai Institute of Ceramic, Chinese Academy of Sciences) (in Chinese) [蒋 俊 2005 博士学位论文 (上海: 中国科学院上海硅酸盐研究所)]

    [22]

    Tang X F, Chen L D, Goto T, Hirai T, Yuan R Z 2000 Acta Phys. Sin. 49 1120 (in Chinese) [唐新峰、 陈立东、 後藤孝、 平井敏雄、 袁润章 2000 物理学报 49 1120]

  • [1] 王俊, 蔡飞燕, 张汝钧, 李永川, 周伟, 李飞, 邓科, 郑海荣. 基于压电声子晶体板波声场的微粒操控. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231886
    [2] 程秋振, 黄引, 李玉辉, 张凯, 冼国裕, 刘鹤元, 车冰玉, 潘禄禄, 韩烨超, 祝轲, 齐琦, 谢耀锋, 潘金波, 陈海龙, 李永峰, 郭辉, 杨海涛, 高鸿钧. 准一维层状半导体Nb4P2S21单晶的面内光学各向异性. 物理学报, 2023, 72(21): 218102. doi: 10.7498/aps.72.20231539
    [3] 蒋东镔, 张颖, 姜大朋, 朱斌, 李纲, 孙立, 黄征, 卢峰, 谢娜, 周凯南, 粟敬钦. Nd, Gd:SrF2晶体材料在宽带放大中的光谱增益特性. 物理学报, 2023, 72(22): 224208. doi: 10.7498/aps.72.20230972
    [4] 刘瑛, 郭斯琳, 张勇, 杨鹏, 吕克洪, 邱静, 刘冠军. 1/f噪声及其在二维材料石墨烯中的研究进展. 物理学报, 2023, 72(1): 017302. doi: 10.7498/aps.72.20221253
    [5] 王振宇, 李志雄, 袁怀洋, 张知之, 曹云姗, 严鹏. 磁子学中的拓扑物态与量子效应. 物理学报, 2023, 72(5): 057503. doi: 10.7498/aps.72.20221997
    [6] 邱钰珺, 李亨宣, 李亚涛, 黄春朴, 李卫华, 张旭涛, 刘英光. 基于纳米点嵌入的界面导热性能优化. 物理学报, 2023, 72(11): 113102. doi: 10.7498/aps.72.20230314
    [7] 何宽鱼, 邱天宇, 奚啸翔. 二维WTe2晶格对称性的光学研究. 物理学报, 2022, 71(17): 176301. doi: 10.7498/aps.71.20220804
    [8] 袁永浩, 薛其坤, 李渭. FeSe/SrTiO3高温超导体中的电子条纹相. 物理学报, 2022, 71(12): 127304. doi: 10.7498/aps.71.20220118
    [9] 戚炜恒, 王震, 李翔飞, 禹日成, 王焕华. 外延BaMoO3, BaMoO4薄膜的生长行为. 物理学报, 2022, 71(17): 178103. doi: 10.7498/aps.71.20220736
    [10] 梁艳美, 陆博, 古华光. 利用双慢变量的快慢变量分离分析新脑皮层神经元Wilson模型的复杂电活动. 物理学报, 2022, 71(23): 230502. doi: 10.7498/aps.71.20221416
    [11] Xiaoyin Xu, shengshuai liu, 荆杰泰. 基于四波混频过程的纠缠光放大. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211324
    [12] 郭文锑, 黄璐, 许桂贵, 钟克华, 张健敏, 黄志高. 本征磁性拓扑绝缘体MnBi2Te4电子结构的压力应变调控. 物理学报, 2021, 70(4): 047101. doi: 10.7498/aps.70.20201237
    [13] 宋飞龙, 王玉暖, 张峰, 武诗谣, 谢昕, 杨静南, 孙思白, 党剑臣, 肖姗, 杨龙龙, 钟海政, 许秀来. CH3NH3PbBr3纳米线中束缚激子g因子的各向异性. 物理学报, 2020, 69(16): 167102. doi: 10.7498/aps.69.20200646
    [14] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [15] 张亚菊, 谢忠帅, 郑海务, 袁国亮. Au-BiFeO3纳米复合薄膜的电学和光伏性能优化. 物理学报, 2020, 69(12): 127709. doi: 10.7498/aps.69.20200309
    [16] 王朝辉, 李勇祥, 朱帅. 基于超表面的旋向选择吸波体. 物理学报, 2020, 69(23): 234103. doi: 10.7498/aps.69.20200511
    [17] 郑丽仙, 胡剑峰, 骆军. 铜掺杂Cu2SnSe4的热电输运性能. 物理学报, 2020, 69(24): 247102. doi: 10.7498/aps.69.20200861
    [18] 马堃, 陈展斌, 黄时中. 等离子体屏蔽效应对Ar16+基态和激发态能级的影响. 物理学报, 2019, 68(2): 023102. doi: 10.7498/aps.68.20181915
    [19] 武瑞琪, 郭迎春, 王兵兵. SF6分子最高占据轨道对称性的判断. 物理学报, 2019, 68(8): 080201. doi: 10.7498/aps.68.20182231
    [20] 王庆玲, 迪拉热·哈力木拉提, 沈玉玲, 艾尔肯·斯地克. 多面体共替代对Sr2(Al1–xMgx)(Al1–xSi1+x)O7: Eu2+晶体结构和发光颜色的影响. 物理学报, 2019, 68(10): 100701. doi: 10.7498/aps.68.20182272
计量
  • 文章访问数:  7372
  • PDF下载量:  839
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-01-24
  • 修回日期:  2010-07-12
  • 刊出日期:  2010-06-05

/

返回文章
返回