搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用晶体结构工程提升GeSe化合物热电性能的研究

胡威威 孙进昌 张玗 龚悦 范玉婷 唐新峰 谭刚健

引用本文:
Citation:

利用晶体结构工程提升GeSe化合物热电性能的研究

胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健

Improving thermoelectric performance of GeSe compound by crystal structure engineering

Hu Wei-Wei, Sun Jin-Chang, Zhang Yu, Gong Yue, Fan Yu-Ting, Tang Xin-Feng, Tan Gang-Jian
PDF
HTML
导出引用
  • 在热电研究领域, GeSe是一种二维层状结构具有较大带隙的半导体, 本征载流子浓度低, 热电性能差. 在本工作中, 采用熔融淬火结合放电等离子活化烧结工艺制备了一系列的GeSe1–xTex (x = 0, 0.05, 0.15, 0.25, 0.35, 0.45)多晶样品, 研究了Te含量对GeSe化合物物相结构和热电输运性能的影响规律. 结果表明: 随着Te含量的增加, GeSe的晶体结构逐渐由正交相向菱方相转变, 使得材料的带隙降低, 载流子浓度和迁移率同步增加; 同时, 晶体对称性的提高增加了化合物的能带简并度, 有效提高了载流子有效质量. 在这些因素的共同作用下, 菱方相GeSe的功率因子比正交相GeSe提高约2—3个数量级. 此外, 菱方相GeSe具有丰富的阳离子空位缺陷以及铁电特性所导致的声子软化现象, 这导致其晶格热导率比正交相GeSe降低近60%. 当Te含量为0.45时, 样品在573 K取得最大热电优值ZT为0.75, 是本征GeSe样品的19倍. 晶体结构工程是提升GeSe化合物热电性能的有效途径.
    In the thermoelectric field, GeSe is a two-dimensional layered semiconductor with a large band gap, intrinsically low carrier concentration and poor thermoelectric figure of merit ZT. In this work, a series of GeSe1–xTex (x = 0, 0.05, 0.15, 0.25, 0.35, 0.45) polycrystalline samples is prepared by melting and quenching combined with spark plasma activation sintering process. The influences of Te content on the phase structure and thermoelectric transport properties of GeSe are systematically studied. The results indicate that with the increase of Te content, the crystal structure of GeSe gradually changes from orthorhombic to rhombohedral structure. This reduces the band gap of the material, and simultaneously increases the carrier concentration and mobility. Meanwhile, the energy band degeneracy of the compound increases significantly because of enhanced crystal symmetry in this process, thereby considerably improving the effective mass of carriers. Altogether, the power factor of the rhombohedral GeSe is increased by about 2 to 3 orders of magnitude compared with that of the orthorhombic phase GeSe. In addition, the rhombohedral phase GeSe has abundant cationic vacancy defects and softened phonons arising from its ferroelectric feature, leading the lattice thermal conductivity to be 60% lower than orthorhombic one. The GeSe0.55Te0.45 sample achieves a peak ZT of 0.75 at 573 K, which is 19 times that of pristine GeSe. Crystal structure engineering could be considered as an effective way of improving the thermoelectric performance of GeSe compounds.
      通信作者: 谭刚健, gtan@whut.edu.cn
      Corresponding author: Tan Gang-Jian, gtan@whut.edu.cn
    [1]

    Wang Y, Shi Y, Mei D, Chen Z 2017 Appl. Energy 205 710Google Scholar

    [2]

    Kim Y J, Gu H M, Kim C S, Choi H, Lee G, Kim S, Yi K K, Lee S G, Cho B J 2018 Energy 162 526Google Scholar

    [3]

    Tan G, Zhao L D, Kanatzidis M G 2016 Chem. Rev. 116 12123Google Scholar

    [4]

    Okazaki A 1958 J. Phys. Soc. Jpn. 13 1151Google Scholar

    [5]

    Sist M, Gatti C, Norby P, Cenedese S, Kasai H, Kato K, Iversen B B 2017 Chem. Eur. J. 23 6888Google Scholar

    [6]

    Kim Y, Choi I-H 2018 J. Korean Phys. Soc. 72 238Google Scholar

    [7]

    Hao S, Shi F, Dravid V P, Kanatzidis M G, Wolverton C 2016 Chem. Mater. 28 3218Google Scholar

    [8]

    Fan Q, Yang J, Cao J, Liu C 2021 R. Soc. Open Sci. 8 201980Google Scholar

    [9]

    Yuan K, Sun Z, Zhang X, Tang D 2019 Sci. Rep. 9 9490Google Scholar

    [10]

    Roychowdhury S, Ghosh T, Arora R, Waghmare U V, Biswas K 2018 Angew. Chem. Int. Ed. 57 15167Google Scholar

    [11]

    Yan M, Geng H, Jiang P, Bao X 2020 J. Energy Chem. 45 83Google Scholar

    [12]

    Zhang X, Shen J, Lin S, Li J, Chen Z, Li W, Pei Y 2016 J. Materiomics 2 331Google Scholar

    [13]

    Huang Z, Miller S A, Ge B, Yan M, Anand S, Wu T, Nan P, Zhu Y, Zhuang W, Snyder G J, Jiang P, Bao X 2017 Angew. Chem. Int. Ed. 56 14113Google Scholar

    [14]

    Yan M, Tan X, Huang Z, Liu G, Jiang P, Bao X 2018 J. Mater. Chem. A 6 8215Google Scholar

    [15]

    Sarkar D, Ghosh T, Roychowdhury S, Arora R, Sajan S, Sheet G, Waghmare U V, Biswas K 2020 J. Am. Chem. Soc. 142 12237Google Scholar

    [16]

    Li J, Zhang X, Lin S, Chen Z, Pei Y 2017 Chem. Mater. 29 605Google Scholar

    [17]

    Wang Z, Wu H, Xi M, Zhu H, Dai L, Xiong Q, Wang G, Han G, Lu X, Zhou X, Wang G 2020 ACS Appl. Mater. Interfaces 12 41381Google Scholar

    [18]

    Sidharth D, Alagar Nedunchezhian A S, Akilan R, Srivastava A, Srinivasan B, Immanuel P, Rajkumar R, Yalini Devi N, Arivanandhan M, Liu C J, Anbalagan G, Shankar R, Jayavel R 2021 Sustain. Energy Fuels 5 1734Google Scholar

    [19]

    Shaabani L, Aminorroaya-Yamini S, Byrnes J, Akbar Nezhad A, Blake G R 2017 ACS Omega 2 9192Google Scholar

    [20]

    范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰 2021 物理学报 70 137102Google Scholar

    Fan R J, Jiang X Y, Tao Q R, Mei Q C, Tang Y F, Chen Z Q, Su X L, Tang X F 2021 Acta Phys. Sin. 70 137102Google Scholar

    [21]

    Cao Y, Su X, Meng F, Bailey T P, Zhao J, Xie H, He J, Uher C, Tang X 2020 Adv. Funct. Mater. 30 2005861Google Scholar

    [22]

    黄平, 游理, 梁星, 张继业, 骆军 2019 物理学报 68 077201Google Scholar

    Huang P, You L, Liang X, Zhang J Y, Luo J 2019 Acta Phys. Sin. 68 077201Google Scholar

    [23]

    苏贤礼, 唐新峰, 李涵, 邓书康 2008 物理学报 57 6488Google Scholar

    Su X L, Tang X F, Li H, Deng S G 2008 Acta Phys. Sin. 57 6488Google Scholar

    [24]

    Sun J, Su X, Yan Y, Liu W, Tan G, Tang X 2020 ACS Appl. Energy Mater. 3 2Google Scholar

    [25]

    Zhang W, Chen C, Yao H, Xue W, Li S, Bai F, Huang Y, Li X, Lin X, Cao F, Sui J, Wang S, Yu B, Wang Y, Liu X, Zhang Q 2020 Chem. Mater. 32 6983Google Scholar

    [26]

    Nshimyimana E, Hao S, Su X, Zhang C, Liu W, Yan Y, Uher C, Wolverton C, Kanatzidis M G, Tang X 2020 J. Mater. Chem. A 8 1193Google Scholar

    [27]

    Zheng Z, Su X, Deng R, Stoumpos C, Xie H, Liu W, Yan Y, Hao S, Uher C, Wolverton C, Kanatzidis M G, Tang X 2018 J. Am. Chem. Soc. 140 2673Google Scholar

    [28]

    Chen S, Bai H, Li J, Pan W, Jiang X, Li Z, Chen Z, Yan Y, Su X, Wu J, Uher C, Tang X 2020 ACS Appl. Mater. Interfaces 12 19664Google Scholar

    [29]

    Franz R, Wiedemann G 1853 Ann. Phys. 165 497

    [30]

    Pietrak K, Wisniewski T S 2015 J. Power Technol. 95 14

    [31]

    Banik A, Ghosh T, Arora R, Dutta M, Pandey J, Acharya S, Soni A, Waghmare U V, Biswas K 2019 Energy Environ. Sci. 12 589Google Scholar

  • 图 1  (a)室温下正交相GeSe的晶体结构; (b)~900 K 正交结构GeSe相变为立方结构

    Fig. 1.  (a) Crystal structure of orthorhombic GeSe at 300 K and its evolution with temperature; (b) phase transition to cubic one occurring around 900 K.

    图 2  GeSe1–xTex (x = 0—0.45)样品的 (a)粉末XRD图谱; (b) 28°—35°粉末XRD图谱; (c)晶胞参数; (d) GeSe-GeTe赝二元相图

    Fig. 2.  (a) Powder XRD patterns of GeSe1–xTex samples (x = 0–0.45); (b) enlarged view of XRD patterns (2θ = 28°–35°); (c) the a, b and c lattice parameters of GeSe1–xTex samples (x = 0–0.45); (d) GeSe-GeTe pseudo-binary phase diagram.

    图 3  GeSe1–xTex(x = 0—0.45)样品末XRD精修图谱与实测图谱: (a) x = 0.15; (b) x = 0.25; (c) x = 0.35

    Fig. 3.  Rietveld refinement XRD results of GeSe1–xTex (x = 0–0.45): (a) x = 0.15; (b) x = 0.25; (c) x = 0.35.

    图 4  GeSe1–xTex (x = 0—0.45)化合物的断面FESEM图片 (a) x = 0; (b) x = 0.05; (c) x = 0.15; (d) x = 0.25; (e) x = 0.35; (f) x = 0.45

    Fig. 4.  FESEM images of the freshly fractured surface of GeSe1–xTex (x = 0–0.45): (a) x = 0; (b) x = 0.05; (c) x = 0.15; (d) x = 0.25; (e) x = 0.35; (f) x = 0.45.

    图 5  GeSe1–xTex样品的背散射电子像和对应元素的面分布图谱 (a)—(d) x = 0.05; (e)—(h) x = 0.45; (i)—(l) x = 0.15; (m)—(p) x = 0.35

    Fig. 5.  Back-scattered electron (BSE) images and corresponding elemental distribution mappings of GeSe1–xTex samples: (a)–(d) x = 0.05; (e)–(h) x = 0.45; (i)–(l) x = 0.15; (m)–(p) x = 0.35.

    图 6  GeSe1–xTex(x = 0—0.45)样品的电输运性质随温度变化曲线: (a) Seebeck系数, 插图为x = 0与x = 0.05样品; (b)电导率, 插图为x = 0与x = 0.05样品

    Fig. 6.  Temperature dependence of (a) Seebeck coefficient and (b) electrical conductivity for GeSe1–xTex (x = 0–0.45) samples. Insets are enlarged views for x = 0 and x = 0.05 samples.

    图 7  室温下GeSe1–xTex(x = 0—0.45)样品的(a)载流子浓度(pH)和(b)迁移率(µH)

    Fig. 7.  Room temperature (a) carrier concentration (pH) and (b) carrier mobility (µH) versus Te content (x) in GeSe1–xTex (x = 0–0.45) samples.

    图 8  GeSe1–xTex (x = 0—0.45)样品: (a)室温下的Pisarenko曲线和(b)功率因子随温度变化曲线

    Fig. 8.  (a) Pisarenko curves at room temperature and (b) temperature dependent power factors of GeSe1–xTex samples.

    图 9  GeSe1–xTex (x = 0—0.45)样品的(a)总热导率和(b)晶格热导率随温度变化曲线

    Fig. 9.  Temperature dependence of (a) total and (b) lattice thermal conductivities of GeSe1–xTex (x = 0–0.45) samples.

    图 10  GeSe1–xTex 样品的DSC曲线 (a) x = 0.05; (b) x = 0.15; (c) x = 0.35; (d) x = 0.45

    Fig. 10.  DSC curves of GeSe1–xTex samples: (a) x = 0.05, (b) x = 0.15, (c) x = 0.35, (d) x = 0.45.

    图 11  GeSe1–xTex(x = 0—0.45)样品的ZT值随温度变化的关系曲线

    Fig. 11.  Temperature dependence of ZT values of GeSe1–xTex (x = 0–0.45) samples.

    表 1  室温下GeSe1–xTex样品中各种物相的质量分数

    Table 1.  Mass fractions of various phases in GeSe1–xTex (x = 0.15, 0.25, 0.35) samples at room temperature.

    样品组分(GeSe1–xTex)质量分数/%
    正交相菱方相
    x = 0.1580.919.1
    x = 0.2558.541.5
    x = 0.3511.288.8
    下载: 导出CSV
  • [1]

    Wang Y, Shi Y, Mei D, Chen Z 2017 Appl. Energy 205 710Google Scholar

    [2]

    Kim Y J, Gu H M, Kim C S, Choi H, Lee G, Kim S, Yi K K, Lee S G, Cho B J 2018 Energy 162 526Google Scholar

    [3]

    Tan G, Zhao L D, Kanatzidis M G 2016 Chem. Rev. 116 12123Google Scholar

    [4]

    Okazaki A 1958 J. Phys. Soc. Jpn. 13 1151Google Scholar

    [5]

    Sist M, Gatti C, Norby P, Cenedese S, Kasai H, Kato K, Iversen B B 2017 Chem. Eur. J. 23 6888Google Scholar

    [6]

    Kim Y, Choi I-H 2018 J. Korean Phys. Soc. 72 238Google Scholar

    [7]

    Hao S, Shi F, Dravid V P, Kanatzidis M G, Wolverton C 2016 Chem. Mater. 28 3218Google Scholar

    [8]

    Fan Q, Yang J, Cao J, Liu C 2021 R. Soc. Open Sci. 8 201980Google Scholar

    [9]

    Yuan K, Sun Z, Zhang X, Tang D 2019 Sci. Rep. 9 9490Google Scholar

    [10]

    Roychowdhury S, Ghosh T, Arora R, Waghmare U V, Biswas K 2018 Angew. Chem. Int. Ed. 57 15167Google Scholar

    [11]

    Yan M, Geng H, Jiang P, Bao X 2020 J. Energy Chem. 45 83Google Scholar

    [12]

    Zhang X, Shen J, Lin S, Li J, Chen Z, Li W, Pei Y 2016 J. Materiomics 2 331Google Scholar

    [13]

    Huang Z, Miller S A, Ge B, Yan M, Anand S, Wu T, Nan P, Zhu Y, Zhuang W, Snyder G J, Jiang P, Bao X 2017 Angew. Chem. Int. Ed. 56 14113Google Scholar

    [14]

    Yan M, Tan X, Huang Z, Liu G, Jiang P, Bao X 2018 J. Mater. Chem. A 6 8215Google Scholar

    [15]

    Sarkar D, Ghosh T, Roychowdhury S, Arora R, Sajan S, Sheet G, Waghmare U V, Biswas K 2020 J. Am. Chem. Soc. 142 12237Google Scholar

    [16]

    Li J, Zhang X, Lin S, Chen Z, Pei Y 2017 Chem. Mater. 29 605Google Scholar

    [17]

    Wang Z, Wu H, Xi M, Zhu H, Dai L, Xiong Q, Wang G, Han G, Lu X, Zhou X, Wang G 2020 ACS Appl. Mater. Interfaces 12 41381Google Scholar

    [18]

    Sidharth D, Alagar Nedunchezhian A S, Akilan R, Srivastava A, Srinivasan B, Immanuel P, Rajkumar R, Yalini Devi N, Arivanandhan M, Liu C J, Anbalagan G, Shankar R, Jayavel R 2021 Sustain. Energy Fuels 5 1734Google Scholar

    [19]

    Shaabani L, Aminorroaya-Yamini S, Byrnes J, Akbar Nezhad A, Blake G R 2017 ACS Omega 2 9192Google Scholar

    [20]

    范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰 2021 物理学报 70 137102Google Scholar

    Fan R J, Jiang X Y, Tao Q R, Mei Q C, Tang Y F, Chen Z Q, Su X L, Tang X F 2021 Acta Phys. Sin. 70 137102Google Scholar

    [21]

    Cao Y, Su X, Meng F, Bailey T P, Zhao J, Xie H, He J, Uher C, Tang X 2020 Adv. Funct. Mater. 30 2005861Google Scholar

    [22]

    黄平, 游理, 梁星, 张继业, 骆军 2019 物理学报 68 077201Google Scholar

    Huang P, You L, Liang X, Zhang J Y, Luo J 2019 Acta Phys. Sin. 68 077201Google Scholar

    [23]

    苏贤礼, 唐新峰, 李涵, 邓书康 2008 物理学报 57 6488Google Scholar

    Su X L, Tang X F, Li H, Deng S G 2008 Acta Phys. Sin. 57 6488Google Scholar

    [24]

    Sun J, Su X, Yan Y, Liu W, Tan G, Tang X 2020 ACS Appl. Energy Mater. 3 2Google Scholar

    [25]

    Zhang W, Chen C, Yao H, Xue W, Li S, Bai F, Huang Y, Li X, Lin X, Cao F, Sui J, Wang S, Yu B, Wang Y, Liu X, Zhang Q 2020 Chem. Mater. 32 6983Google Scholar

    [26]

    Nshimyimana E, Hao S, Su X, Zhang C, Liu W, Yan Y, Uher C, Wolverton C, Kanatzidis M G, Tang X 2020 J. Mater. Chem. A 8 1193Google Scholar

    [27]

    Zheng Z, Su X, Deng R, Stoumpos C, Xie H, Liu W, Yan Y, Hao S, Uher C, Wolverton C, Kanatzidis M G, Tang X 2018 J. Am. Chem. Soc. 140 2673Google Scholar

    [28]

    Chen S, Bai H, Li J, Pan W, Jiang X, Li Z, Chen Z, Yan Y, Su X, Wu J, Uher C, Tang X 2020 ACS Appl. Mater. Interfaces 12 19664Google Scholar

    [29]

    Franz R, Wiedemann G 1853 Ann. Phys. 165 497

    [30]

    Pietrak K, Wisniewski T S 2015 J. Power Technol. 95 14

    [31]

    Banik A, Ghosh T, Arora R, Dutta M, Pandey J, Acharya S, Soni A, Waghmare U V, Biswas K 2019 Energy Environ. Sci. 12 589Google Scholar

  • [1] 陈上峰, 孙乃坤, 张宪民, 王凯, 李武, 韩艳, 吴丽君, 岱钦. Mn3As2掺杂Cd3As2纳米结构的制备及热电性能. 物理学报, 2022, 71(18): 187201. doi: 10.7498/aps.71.20220584
    [2] 訾鹏, 白辉, 汪聪, 武煜天, 任培安, 陶奇睿, 吴劲松, 苏贤礼, 唐新峰. AgyIn3.33–y/3Se5化合物结构和热电性能. 物理学报, 2022, 71(11): 117101. doi: 10.7498/aps.71.20220179
    [3] 李梦荣, 应鹏展, 李勰, 崔教林. 采用熵工程技术改善SnTe基材料的热电性能. 物理学报, 2022, 71(23): 237302. doi: 10.7498/aps.71.20221247
    [4] 范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰. In1+xTe化合物的结构及热电性能研究. 物理学报, 2021, 70(13): 137102. doi: 10.7498/aps.70.20210041
    [5] 胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健. 利用晶体结构工程提升GeSe化合物热电性能的研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211843
    [6] 邹平, 吕丹, 徐桂英. 高压烧结制备Tb掺杂n型(Bi1–xTbx)2(Te0.9Se0.1)3合金及其微结构和热电性能. 物理学报, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [7] 张东, 娄文凯, 常凯. 半导体极性界面电子结构的理论研究. 物理学报, 2019, 68(16): 167101. doi: 10.7498/aps.68.20191239
    [8] 孙政, 陈少平, 杨江锋, 孟庆森, 崔教林. 非等电子Sb替换Cu和Te后黄铜矿结构半导体Cu3Ga5Te9的热电性能. 物理学报, 2014, 63(5): 057201. doi: 10.7498/aps.63.057201
    [9] 张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉. Cu掺杂AgSbTe2化合物的相稳定、晶体结构及热电性能. 物理学报, 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [10] 刘剑, 王春雷, 苏文斌, 王洪超, 张家良, 梅良模. Nb掺杂对还原性烧结的TiO2-陶瓷的晶体结构及热电性能的影响. 物理学报, 2011, 60(8): 087204. doi: 10.7498/aps.60.087204
    [11] 黄多辉, 王藩侯, 程晓洪, 万明杰, 蒋刚. GeTe和GeSe 分子在外电场下的特性研究. 物理学报, 2011, 60(12): 123101. doi: 10.7498/aps.60.123101
    [12] 周龙, 李涵, 苏贤礼, 唐新峰. In掺杂对n型方钴矿化合物的微结构及热电性能的影响规律. 物理学报, 2010, 59(10): 7219-7224. doi: 10.7498/aps.59.7219
    [13] 郭全胜, 李涵, 苏贤礼, 唐新峰. 熔体旋甩法制备p型填充式方钴矿化合物Ce0.3Fe1.5Co2.5Sb12的微结构及热电性能. 物理学报, 2010, 59(9): 6666-6672. doi: 10.7498/aps.59.6666
    [14] 王善禹, 谢文杰, 李涵, 唐新峰. 熔体旋甩法合成n型(Bi0.85Sb0.15)2(Te1-xSex)3化合物的微结构及热电性能. 物理学报, 2010, 59(12): 8927-8933. doi: 10.7498/aps.59.8927
    [15] 苏贤礼, 唐新峰, 李涵. 熔体旋甩工艺对n型InSb化合物的微结构及热电性能的影响. 物理学报, 2010, 59(4): 2860-2866. doi: 10.7498/aps.59.2860
    [16] 邓书康, 唐新峰, 杨培志, 鄢永高. Cd掺杂p型Ge基Ba8Ga16CdxGe30-x Ⅰ型笼合物的结构及热电特性. 物理学报, 2009, 58(6): 4274-4280. doi: 10.7498/aps.58.4274
    [17] 曹卫强, 邓书康, 唐新峰, 李鹏. 熔体旋甩工艺对Zn掺杂Ⅰ-型Ba8Ga12Zn2Ge32笼合物微结构及热电性能的影响. 物理学报, 2009, 58(1): 612-618. doi: 10.7498/aps.58.612
    [18] 苏贤礼, 唐新峰, 李 涵, 邓书康. Ga填充n型方钴矿化合物的结构及热电性能. 物理学报, 2008, 57(10): 6488-6493. doi: 10.7498/aps.57.6488
    [19] 冯 晶, 肖 冰, 陈敬超. CuInSe2电子结构与光学性质的第一性原理计算. 物理学报, 2007, 56(10): 5990-5995. doi: 10.7498/aps.56.5990
    [20] 潘志军, 张澜庭, 吴建生. 掺杂半导体β-FeSi2电子结构及几何结构第一性原理研究. 物理学报, 2005, 54(11): 5308-5313. doi: 10.7498/aps.54.5308
计量
  • 文章访问数:  3408
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-05
  • 修回日期:  2021-11-09
  • 上网日期:  2022-02-19
  • 刊出日期:  2022-02-20

/

返回文章
返回