搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GeTe和GeSe 分子在外电场下的特性研究

黄多辉 王藩侯 程晓洪 万明杰 蒋刚

引用本文:
Citation:

GeTe和GeSe 分子在外电场下的特性研究

黄多辉, 王藩侯, 程晓洪, 万明杰, 蒋刚

The study of structure characteristics of GeTe and GeSe molecules under the external electric field

Huang Duo-Hui, Wang Fan-Hou, Cheng Xiao-Hong, Wan Ming-Jie, Jiang Gang
PDF
导出引用
  • 对Ge原子采用6-311++G**基函数,Te和Se原子采用SDB-cc-pVTZ基函数,利用密度泛函理论的局域自旋密度近似方法优化得到了GeTe和GeSe分子的稳定构型,并计算了外电场作用下GeTe和GeSe基态分子的平衡核间距、总能量、最高已占据分子轨道能量EH、最低未占分子轨道能量EL、能隙、谐振频率和红外谱强度. 在上述计算的基础上利用单激发组态相互作用-局域自旋密度近似方法研究了GeTe和GeSe分子在外电场下的激发特性. 结果表明:随着正向电场强度的增大,分子核间距逐渐增大,分子总能量逐渐降低,谐振频率逐渐减小,红外谱强度则逐渐增大. 在0-2.05691010 Vm-1的电场范围内,GeTe分子的EH 均高于GeSe分子的EH;随着正向电场的增大,GeTe与GeSe的EH差逐渐变大,GeTe的EL低于GeSe的EL,它们的EL均随正向电场的增大而增大. 无外场时,GeTe分子的能隙比GeSe分子的能隙要小;在外电场反向增大的过程中, GeTe和GeSe的分子能隙始终减小. 外电场的大小和方向对GeTe和GeSe分子的激发能、振子强度及跃迁的波长均有较大影响.
    Equilibrium structures of the GeTe and GeSe ground state molecules are obtained by employing the local spin density approximation method with 6-311++G** basis sets for Ge and SDB-cc-pVTZ for Te and Se. Also obtained are the equilibrium geometry, the highest occupied molecular orbital(HOMO) energy level, the lowest unoccupied molecular orbital(LUMO)energy level, the energy gap, the harmonic frequency and the infrared intensity of GeTe and GeSe ground state molecules under different electric fields. On the basis of the above calculation, the excited states of GeTe and GeSe molecules under different electric fields are also investigated by using the single-excitation configuration interaction-local spin density approximation method. The results show that the equilibrium internuclear distance and the intensity of infrared are found to increase, but the total energy and harmonic frequency are proved to decrease with the increase of positive direction electric field. The HOMO energy EH of GeTe molecule is higher than that of GeSe molecule under electric fields ranging from 0 to 2.05691010 V m-1. For GeTe and GeSe molecules, their difference in EH gradually increases with the increase of positive direction electric field. The LUMO energy EL of GeTe molecule is lower than that of GeSe molecule, and their LUMO energies are found to increase with the increase of positive direction electric field. The energy gap of GeTe is low than that of GeSe, and their energy gaps always decrease with the increase the negative direction electric field. The magnitude and the direction of the external electric field have important effects on excitation energy, oscillator strength and wavelength.
    • 基金项目: 四川省教育厅科研基金(批准号:09ZC048)资助的课题.
    [1]

    Akifumi O, Ichiro S, Yasuhiko F, Nobuo M, Shunji S 1997 Phys. Rev. B 56 7935

    [2]
    [3]

    White M V G, Rosenberg R A, Tlee S, Shirley D A 1979 J. Electron Spectrosc. Relat. Phenom. 17 323

    [4]
    [5]

    Drummond G, Barrow R F 1952 Proc. Phys. Soc. A 65 277

    [6]
    [7]

    Rathor A, Sharma V, Heda N L, Sharma Y, Ahuja B L 2008 Rad. Phys.Chem. 77 391

    [8]
    [9]

    Hosokawayk S, Hariy Y, Kouchiy T, Onoy I, Satoy H, Taniguchiy M, Hirayay A, Takataz Y, Kosugiz N, Watanabex M 1998 J. Phys. Condens. Matter 10 1931

    [10]

    Nikolic P M 1969 J. Phys. D 2 383

    [11]
    [12]

    Eymard R, Otto A 1977 Phys. Rev. B 16 1616

    [13]
    [14]

    Colin R, Drowart J 1968 J. Phys. Chem. 68 428

    [15]
    [16]

    Kemeny P C, Azoulay J, Cardona M, Ley L 1977 Il Nuovo. Cimento B 39 709

    [17]
    [18]
    [19]

    Akola J, Jones R O 2007 Phys. Rev. B 76 235201

    [20]

    Yamada N, Ohno E, Nishiuchi K, Akahira N, Takao M, Yagumo-Nakamachi M 1991 J. Appl. Phys. 69 2849

    [21]
    [22]

    O'Hare P A G, Susman S, Volin K J 1989 J. Chem. Thermodyn. 21 827

    [23]
    [24]
    [25]

    Jalbout A F, Li X H, Abou-Rachid H 2007 Int. J. Quantum Chem. 107 522

    [26]
    [27]

    Chen X J, Ma M Z, Luo S Z, Zhu Z H 2004 J. At. Mol. Phys. 21 19 (in Chinese) [陈晓军、马美仲、罗顺忠、朱正和 2004 原子与分子物理学报 21 19]

    [28]

    Xu G L, Xiao X H, Liu Y F, Sun J F, Zhu Z H 2007 Acta Phys. Chim. Sin. 23 746 (in Chinese) [徐国亮、肖小红、刘玉芳、孙金锋、朱正和 2007 物理化学学报 23 746]

    [29]
    [30]
    [31]

    Xu G L, Xia Y Z, Liu X F, Zhang X Z, Liu Y F 2010 Acta Phys. Sin. 59 7762 (in Chinese) [徐国亮、夏要争、刘雪峰、张现周、刘玉芳 2010 物理学报 59 7762]

    [32]

    Frisch M J, Trucks G W, Schegd H B 2003 Gaussian 03, Revision B03 (Pittsburgh: Gaussian Inc.)

    [33]
    [34]
    [35]

    Martin J M L, Sundermann A 2001 J. Chem. Phys. 114 3408

    [36]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure: Constants of Diatomic Molecules (New York: Van Nostrand Reinhold Company) p238

    [37]
    [38]

    Xie A D, Meng D Q, Luo D L, Ma M Z, Zhu Z H 2007 J. At. Mol. Phys. 24 387 (in Chinese) [谢安东、蒙大桥、罗德礼、马美仲、朱正和 2007 原子与分子物理学报 24 387]

    [39]
    [40]
    [41]

    Yan Z Z 2006 Electro-Optics Technol. 47 8 (in Chinese) [严增濯 2006 光电技术 47 8]

  • [1]

    Akifumi O, Ichiro S, Yasuhiko F, Nobuo M, Shunji S 1997 Phys. Rev. B 56 7935

    [2]
    [3]

    White M V G, Rosenberg R A, Tlee S, Shirley D A 1979 J. Electron Spectrosc. Relat. Phenom. 17 323

    [4]
    [5]

    Drummond G, Barrow R F 1952 Proc. Phys. Soc. A 65 277

    [6]
    [7]

    Rathor A, Sharma V, Heda N L, Sharma Y, Ahuja B L 2008 Rad. Phys.Chem. 77 391

    [8]
    [9]

    Hosokawayk S, Hariy Y, Kouchiy T, Onoy I, Satoy H, Taniguchiy M, Hirayay A, Takataz Y, Kosugiz N, Watanabex M 1998 J. Phys. Condens. Matter 10 1931

    [10]

    Nikolic P M 1969 J. Phys. D 2 383

    [11]
    [12]

    Eymard R, Otto A 1977 Phys. Rev. B 16 1616

    [13]
    [14]

    Colin R, Drowart J 1968 J. Phys. Chem. 68 428

    [15]
    [16]

    Kemeny P C, Azoulay J, Cardona M, Ley L 1977 Il Nuovo. Cimento B 39 709

    [17]
    [18]
    [19]

    Akola J, Jones R O 2007 Phys. Rev. B 76 235201

    [20]

    Yamada N, Ohno E, Nishiuchi K, Akahira N, Takao M, Yagumo-Nakamachi M 1991 J. Appl. Phys. 69 2849

    [21]
    [22]

    O'Hare P A G, Susman S, Volin K J 1989 J. Chem. Thermodyn. 21 827

    [23]
    [24]
    [25]

    Jalbout A F, Li X H, Abou-Rachid H 2007 Int. J. Quantum Chem. 107 522

    [26]
    [27]

    Chen X J, Ma M Z, Luo S Z, Zhu Z H 2004 J. At. Mol. Phys. 21 19 (in Chinese) [陈晓军、马美仲、罗顺忠、朱正和 2004 原子与分子物理学报 21 19]

    [28]

    Xu G L, Xiao X H, Liu Y F, Sun J F, Zhu Z H 2007 Acta Phys. Chim. Sin. 23 746 (in Chinese) [徐国亮、肖小红、刘玉芳、孙金锋、朱正和 2007 物理化学学报 23 746]

    [29]
    [30]
    [31]

    Xu G L, Xia Y Z, Liu X F, Zhang X Z, Liu Y F 2010 Acta Phys. Sin. 59 7762 (in Chinese) [徐国亮、夏要争、刘雪峰、张现周、刘玉芳 2010 物理学报 59 7762]

    [32]

    Frisch M J, Trucks G W, Schegd H B 2003 Gaussian 03, Revision B03 (Pittsburgh: Gaussian Inc.)

    [33]
    [34]
    [35]

    Martin J M L, Sundermann A 2001 J. Chem. Phys. 114 3408

    [36]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure: Constants of Diatomic Molecules (New York: Van Nostrand Reinhold Company) p238

    [37]
    [38]

    Xie A D, Meng D Q, Luo D L, Ma M Z, Zhu Z H 2007 J. At. Mol. Phys. 24 387 (in Chinese) [谢安东、蒙大桥、罗德礼、马美仲、朱正和 2007 原子与分子物理学报 24 387]

    [39]
    [40]
    [41]

    Yan Z Z 2006 Electro-Optics Technol. 47 8 (in Chinese) [严增濯 2006 光电技术 47 8]

  • [1] 邢凤竹, 崔建坡, 王艳召, 顾建中. 激发态丰质子核的双质子发射. 物理学报, 2022, 71(6): 062301. doi: 10.7498/aps.71.20211839
    [2] 胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健. 利用晶体结构工程提升GeSe化合物热电性能的研究. 物理学报, 2022, 71(4): 047101. doi: 10.7498/aps.71.20211843
    [3] 王亚超, 林晓然, 王梅, 王吉芳, 陈玲. 电场下饱和甘油三酯分子特性. 物理学报, 2021, 70(23): 233101. doi: 10.7498/aps.70.20211435
    [4] 李世雄, 陈德良, 张正平, 隆正文, 秦水介. 环形C18在外电场下的基态性质和激发特性. 物理学报, 2020, 69(10): 103101. doi: 10.7498/aps.69.20200268
    [5] 李亚莎, 孙林翔, 周筱, 陈凯, 汪辉耀. 基于密度泛函理论的外电场下C5F10O的结构及其激发特性. 物理学报, 2020, 69(1): 013101. doi: 10.7498/aps.69.20191455
    [6] 张锦芳, 任雅娜, 王军民, 杨保东. 铯原子激发态双色偏振光谱. 物理学报, 2019, 68(11): 113201. doi: 10.7498/aps.68.20181872
    [7] 杨涛, 刘代俊, 陈建钧. 外电场下二氧化硫的分子结构及其特性. 物理学报, 2016, 65(5): 053101. doi: 10.7498/aps.65.053101
    [8] 李世雄, 吴永刚, 令狐荣锋, 孙光宇, 张正平, 秦水介. ZnSe在外电场下的基态性质和激发特性研究. 物理学报, 2015, 64(4): 043101. doi: 10.7498/aps.64.043101
    [9] 曹欣伟, 任杨, 刘慧, 李姝丽. 强外电场作用下BN分子的结构与激发特性. 物理学报, 2014, 63(4): 043101. doi: 10.7498/aps.63.043101
    [10] 安跃华, 熊必涛, 邢云, 申婧翔, 李培刚, 朱志艳, 唐为华. 外电场作用下ZnO分子的结构特性研究. 物理学报, 2013, 62(7): 073103. doi: 10.7498/aps.62.073103
    [11] 王藩侯, 黄多辉, 杨俊升. SnSe分子外场下的基态性质和激发态性质. 物理学报, 2013, 62(7): 073102. doi: 10.7498/aps.62.073102
    [12] 高双红, 任兆玉, 郭平, 郑继明, 杜恭贺, 万丽娟, 郑琳琳. 石墨烯量子点的磁性及激发态性质. 物理学报, 2011, 60(4): 047105. doi: 10.7498/aps.60.047105
    [13] 徐国亮, 刘雪峰, 夏要争, 张现周, 刘玉芳. 外电场作用下Si2O分子的激发特性. 物理学报, 2010, 59(11): 7756-7761. doi: 10.7498/aps.59.7756
    [14] 徐国亮, 夏要争, 刘雪峰, 张现周, 刘玉芳. 外电场作用下TiO光激发特性研究. 物理学报, 2010, 59(11): 7762-7768. doi: 10.7498/aps.59.7762
    [15] 周业宏, 蔡绍洪. 氯乙烯在外电场下的激发态结构研究. 物理学报, 2010, 59(11): 7749-7755. doi: 10.7498/aps.59.7749
    [16] 黄多辉, 王藩侯, 闵军, 朱正和. 外电场作用下MgO分子的特性研究. 物理学报, 2009, 58(5): 3052-3057. doi: 10.7498/aps.58.3052
    [17] 徐国亮, 吕文静, 刘玉芳, 朱遵略, 张现周, 孙金锋. 外电场作用下二氧化硅分子的光激发特性研究. 物理学报, 2009, 58(5): 3058-3063. doi: 10.7498/aps.58.3058
    [18] 阮 文, 罗文浪, 张 莉, 朱正和. 外电场作用下苯乙烯分子结构和电子光谱. 物理学报, 2008, 57(10): 6207-6212. doi: 10.7498/aps.57.6207
    [19] 徐国亮, 肖小红, 耿振铎, 刘玉芳, 朱正和. 甲基乙烯基硅酮在外场作用下的光激发特性研究. 物理学报, 2007, 56(9): 5196-5201. doi: 10.7498/aps.56.5196
    [20] 徐国亮, 朱正和, 马美仲, 谢安东. 甲烷在外场作用下的光激发特性研究. 物理学报, 2005, 54(7): 3087-3093. doi: 10.7498/aps.54.3087
计量
  • 文章访问数:  4274
  • PDF下载量:  830
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-29
  • 修回日期:  2011-08-08
  • 刊出日期:  2011-06-05

GeTe和GeSe 分子在外电场下的特性研究

  • 1. 四川大学原子与分子物理研究所,成都 610065;
  • 2. 宜宾学院计算物理实验室,宜宾 644000
    基金项目: 四川省教育厅科研基金(批准号:09ZC048)资助的课题.

摘要: 对Ge原子采用6-311++G**基函数,Te和Se原子采用SDB-cc-pVTZ基函数,利用密度泛函理论的局域自旋密度近似方法优化得到了GeTe和GeSe分子的稳定构型,并计算了外电场作用下GeTe和GeSe基态分子的平衡核间距、总能量、最高已占据分子轨道能量EH、最低未占分子轨道能量EL、能隙、谐振频率和红外谱强度. 在上述计算的基础上利用单激发组态相互作用-局域自旋密度近似方法研究了GeTe和GeSe分子在外电场下的激发特性. 结果表明:随着正向电场强度的增大,分子核间距逐渐增大,分子总能量逐渐降低,谐振频率逐渐减小,红外谱强度则逐渐增大. 在0-2.05691010 Vm-1的电场范围内,GeTe分子的EH 均高于GeSe分子的EH;随着正向电场的增大,GeTe与GeSe的EH差逐渐变大,GeTe的EL低于GeSe的EL,它们的EL均随正向电场的增大而增大. 无外场时,GeTe分子的能隙比GeSe分子的能隙要小;在外电场反向增大的过程中, GeTe和GeSe的分子能隙始终减小. 外电场的大小和方向对GeTe和GeSe分子的激发能、振子强度及跃迁的波长均有较大影响.

English Abstract

参考文献 (41)

目录

    /

    返回文章
    返回