搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

褶皱状单层GeSe各向异性的能带漏斗效应*

刘俊杰 左慧玲 谭鑫 董健生

引用本文:
Citation:

褶皱状单层GeSe各向异性的能带漏斗效应*

刘俊杰, 左慧玲, 谭鑫, 董健生

Anisotropic energy funneling effect in wrinkled monolayer GeSe

Liu Jun-Jie, Zuo Hui-Ling, Tan Xin, Dong Jian-Sheng
PDF
HTML
导出引用
  • 褶皱结构引起的周期性连续变化应变为调控二维材料电子和光电性质提供了重要手段. 然而, 目前关于褶皱状二维材料的形成机理及其对相关物性的调控研究仍缺乏理解. 本文基于原子键弛豫理论和连续介质力学方法, 系统研究了褶皱状单层GeSe能带结构随波长和位置的变化规律. 结果表明, 由于各向异性的力学性质和褶皱引起的周期性连续变化应变, 褶皱状单层GeSe表现出各向异性的能带漏斗效应, 激子会定向聚集在褶皱的谷区域, 且聚集能力随着波长的减小而增强. 此外, 当波长减小至106 nm, 锯齿型褶皱状单层GeSe的能带漏斗消失, 而扶手椅型褶皱状单层GeSe的能带漏斗依然得以保持. 这些结果为褶皱状单层GeSe在激子输运中的应用提供了理论基础, 并为设计高性能基于二维材料的光电器件提供了新策略.
    Two-dimensional materials with tunable wrinkled structures open up a new way to modulate their electronic and optoelectronic properties. However, the mechanisms of forming wrinkles and their influences on the band structures and associated properties are still unclear. Here, we investigate the strain distribution, bandgap, and anisotropic energy funneling effect of wrinkled monolayer GeSe and their evolution with the wrinkle wavelength based on the atomic-bond-relaxation approach and continuum medium mechanics. We find that the top region and valley region of wrinkled monolayer GeSe exhibit tensile and compressive strains, respectively, and the strain increases with wrinkle wavelength decreasing. Moreover, the periodic undulation strain in the wrinkles can lead to continuously adjustable bandgaps and band edges in wrinkled monolayer GeSe. For zigzag wrinkled monolayer GeSe, when the wrinkle wavelength is long, the conduction band minimum value (valence band maximum value) continuously decreases (increases) from the top to the valley, forming an energy funnel. As a result, the excitons accumulate in the valleys of wrinkles, and their accumulation capability increases with wrinkle wavelength decreasing. However, as the wavelength further decreases, the energy funnel will disappear, causing some excitons to t accumulate at the top of wrinkles, while the remaining excitons will accumulate in the valleys of wrinkles. The critical wavelength for the energy funnel of zigzag wrinkled GeSe to disappear is 106nm. The physical origin is that when the top strain exceeds 4%, the bandgap will decrease. Owing to the monotonic variation of bandgap with strain, the energy funneling effect of armchair wrinkled monolayer GeSe is still retained when the wavelength decreases to 80 nm, and the accumulation of excitons is further enhanced. Our results demonstrate that the energy funneling effect induced by nonuniform can realize excitons’ accumulation in one material without the need of p-n junctions, which is of great benefit to the collection of photogenerated excitons. Therefore, the proposed theory not only clarifies the physical mechanism regarding the anisotropic energy funneling effect of wrinkled monolayer GeSe, but also provides a new avenue for designing the next-generation optoelectronic devices.
  • 图 1  褶皱状单层GeSe/衬底结构示意图以及单层GeSe的俯视图和侧视图

    Fig. 1.  Schematic illustration of wrinkled monolayer GeSe/substrate as well as the top and side views of monolayer GeSe.

    图 2  (a) 褶皱状单层GeSe振幅与波长之间的关系; (b) 不同波长下褶皱状单层GeSe应变的分布情况; (c) 单层GeSe带隙随应变的变化规律; (d) 不同波长下褶皱状单层GeSe带隙的分布情况

    Fig. 2.  (a) The relationship between the amplitude and wavelength of wrinkled monolayer GeSe; (b) distribution of strain of wrinkled monolayer GeSe with different wavelengths; (c) strain dependent bandgap of monolayer GeSe; (d) distribution of bandgaps of wrinkled monolayer GeSe with different wavelengths.

    图 3  (a) 锯齿型褶皱状单层GeSe和 (b) 扶手椅型褶皱状单层GeSe在不同波长下单个周期内带边的分布情况

    Fig. 3.  Energy profiles of (a) zigzag wrinkled monolayer GeSe and (b) armchair wrinkled monolayer GeSe with different wavelengths.

    图 4  褶皱状单层GeSe峰导带底和价带顶的一阶导数随波长的变化规律

    Fig. 4.  The first derivatives of CBM and VBM of top as a function of wavelength in zigzag wrinkled GeSe and armchair wrinkled GeSe.

    图 5  褶皱状单层GeSe驱动力和激子转移速率随波长的变换规律

    Fig. 5.  The driving force and exciton transfer rate of wrinkled GeSe as a function of wavelength.

    表 1  理论计算所需参数

    Table 1.  Input parameters for calculations of monolayer GeSe.

    GeSe Ef/GPa a b h EC/eV $ {\nu _{1\left( 3 \right)}} $ $ {\nu _{2\left( 4 \right)}} $ me mh Eg/eV
    Zigzag 66[8] 3.96[6]
    4.16[6]
    2.62[6]
    3.1[4]
    0.42[40]
    (0.14)
    –0.43[9]
    (0.58)
    0.31[6]
    (m0)
    0.38[6]
    (m0)
    1.16[6]
    (eV)
    Armchair 25[8]
    下载: 导出CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [3]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [4]

    Zhao H Q, Mao Y L, Mao X, Shi X, Xu C S, Wang C X, Zhang S M, Zhou D H 2018 Adv. Funct. Mater. 28 1704855Google Scholar

    [5]

    Zhou X, Hu X Z, Jin B, Yu J, Liu K L, Li H Q, Zhai T Y 2018 Adv. Sci. 5 1800478Google Scholar

    [6]

    Hu Y H, Zhang S L, Sun S F, Xie M Q, Cai B, Zeng H B 2015 Appl. Phys. Lett. 107 122107Google Scholar

    [7]

    Xia C X, Du J, Huang X W, Xiao W B, Xiong W Q, Wang T X, Wei Z M, Jia Y, Shi J J, Li J B 2018 Phys. Rev. B 97 115416Google Scholar

    [8]

    Xu Y F, Zhang H, Shao H Z, Ni G, Li J, Lu H L, Zhang R J, Peng Bo, Zhu Y Y, Zhu H Y, Soukoulis C M 2017 Phys. Rev. B 96 245421Google Scholar

    [9]

    Kong X, Deng J K, Li L, Liu Y L, Ding X D, Sun J, Liu J Z 2018 Phys. Rev. B 98 184104Google Scholar

    [10]

    Mao Y L, Xu C S, Yuan J M, Zhao H Q 2019 J. Mater. Chem. A 7 11265Google Scholar

    [11]

    Lu Q L, Yang W H, Xiong F B, Lin H F, Zhuang Q Q 2020 Acta Phys. Sin. 69 196801 [卢群林, 杨伟煌, 熊飞兵, 林海峰, 庄芹芹 2020 物理学报 69 196801]Google Scholar

    Lu Q L, Yang W H, Xiong F B, Lin H F, Zhuang Q Q 2020 Acta Phys. Sin. 69 196801Google Scholar

    [12]

    Muhammad Z, Li Y L, Abbas G, Usman M, Sun Z, Zhang Y, Lv Z Y, Wang Y, Zhao W S 2022 Adv. Electron. Mater. 8 2101112Google Scholar

    [13]

    Huang L, Wu F G, Li J B 2016 J. Chem. Phys. 144 114708Google Scholar

    [14]

    Li Z B, Liu X S, Wang X, Yang Y, Liu S C, Shi W, Li Y, Xing X B, Xue D J, Hu J S 2020 Phys. Chem. Chem. Phys. 22 914Google Scholar

    [15]

    Zuo B Min, Yuan J M, Feng Z, Mao Y L 2019 Acta Phys. Sin. 68 113103 [左博敏, 袁健美, 冯志, 毛宇亮 2019 物理学报 68 113103]Google Scholar

    Zuo B Min, Yuan J M, Feng Z, Mao Y L 2019 Acta Phys. Sin. 68 113103Google Scholar

    [16]

    Guo G X, Bi G 2018 Micro Nano Lett. 13 600Google Scholar

    [17]

    Wang J J, Zhao Y F, Zheng J D, Wang X T, Deng X, Guan Z, Ma R R Zhong Ni, Yue F Y, Wei Z M, Xiang P H, Duan C G 2021 Phys. Chem. Chem. Phys. 23 26997Google Scholar

    [18]

    Li Y, Ma K, Fan X, Liu F S, Li J Q, Xie H P 2020 Appl. Sur. Sci. 521 146256Google Scholar

    [19]

    Feng J, Qian X F, Huang C W, Li J 2012 Nat. Photonics 6 866Google Scholar

    [20]

    Li H, Contryman A W, Qian X F, Ardakani S Mo, Gong Y J, Wang X L, Weisse J M, Lee C H, Zhao J H, Ajayan P M, Li Ju, Manoharan H C, Zheng X L 2015 Nat. Commun. 6 7381Google Scholar

    [21]

    Jose P S, Parente V, Guinea F, Roldán R, Prada E 2016 Phys. Rev. X 6 031046

    [22]

    Lam N H, Nguyen P, Cho S, Kim J 2023 Surf. Sci. 730 122251Google Scholar

    [23]

    Zheng J D, Zhao Y F, Bao Z Q, Shen Y H, Guan Z, Zhong N, Yue F Yu, Xiang P H, Duan C G 2022 2D Mater. 9 035005Google Scholar

    [24]

    Harats M G, Kirchhof J N, Qiao M X, Greben K, Bolotin  K I 2020 Nat. Photonics 14 324Google Scholar

    [25]

    Lee J, Yun S J, Seo C, Cho K, Kim T S, An G H, Kang K, Lee H S, Kim J Y 2020 Nano Lett. 21 43

    [26]

    Wang J W, Han M J, Wang Q, Ji Y Q, Zhang X, Shi R, Wu Z F, Zhang L, Amini A, Guo L, Wang N, Lin J H, Cheng C 2021 ACS Nano 15 6633Google Scholar

    [27]

    Hao S J, Hao Y L, Li J, Wang K Y, Fan C, Zhang S W, Wei Y H, Hao G L 2024 Appl. Phys. Lett. 125 072102Google Scholar

    [28]

    Dastgeer G, Afzal A M, Nazir G, Sarwar N 2021 Adv. Mater. Interfaces 8 2100705Google Scholar

    [29]

    Song Q C, An M, Chen X D, Peng Z, Zang J F, Yang N 2016 Nanoscale 8 14943Google Scholar

    [30]

    Ouyang G, Wang C X, Yang G W 2009 Chem. Rev. 109 4221Google Scholar

    [31]

    Zhu Z M, Zhang A, Ouyang G, Yang G W 2011 Appl. Phys. Lett. 98 263112Google Scholar

    [32]

    Dong J S, Zhao Y P, Ouyang G, Yang G W 2022 Appl. Phys. Lett. 120 080501Google Scholar

    [33]

    Huang R 2005 J. Mech. Phys. Solids 53 63Google Scholar

    [34]

    Jiang H Q, Khang D Y, Song J Z, Sun Y G, Huang Y G, Rogers J A 2007 Proc. Natl. Acad. Sci. 104 15607Google Scholar

    [35]

    Khang D Y, Rogers J A, Lee H H 2008 Adv. Funct. Mater. 18 1

    [36]

    Iguiñiz N, Frisenda R, Bratschitsch R, Gomez A C 2019 Adv. Mater. 31 1807150Google Scholar

    [37]

    Guo Q L, Zhang M, Xue Z Y, Ye L, Wang G, Huang G S, Mei Y F, Wang X, Di Z F 2013 Appl. Phys. Lett. 103 264102Google Scholar

    [38]

    Vellaa D, Bicoa J, Boudaoudb A, Romana B, Reis P M 2009 Proc. Natl. Acad. Sci. 106 10901Google Scholar

    [39]

    Gomez A C, Roldan R, Cappelluti E, Buscema M, Guinea F, Zant H S J, Steele G A 2013 Nano Lett. 13 5361Google Scholar

    [40]

    Jiang J W, Zhou Y P 2017 DOI: 10.5772/intechopen.71929

    [41]

    Sun C Q 2007 Prog. Solid State Chem. 35 1Google Scholar

    [42]

    Zhu Y F, Jiang Q 2016 Coordin. Chem. Rev. 326 1Google Scholar

    [43]

    Marcus R A 1956 J. Chem. Phys. 24 966Google Scholar

    [44]

    Wang J H, Ding T, Gao K M, Wang L F, Zhou P W, Wu K F 2021 Nat. Commun. 12 6333Google Scholar

    [45]

    Ghosh R, Papnai B, Chen Y S, Yadav K, Sankar R, Hsieh Y P, Hofmann M, Chen Y F 2023 Adv. Mater. 35 2210746Google Scholar

    [46]

    Garzona L V, Frisenda R, Gomez A C 2019 Nanoscale 11 12080Google Scholar

    [47]

    Shang H X, Liang X, Deng F, Hu S L, Shen S P 2022 Int. J. Mech. Sci. 234 107685Google Scholar

    [48]

    Shang H X, Dong H T, Wu Y H, Deng F, Liang X, Hu S L, Shen S P 2024 Phys. Rev. Lett. 132 116201Google Scholar

    [49]

    Zhang Z, Zhao Y P, Ouyang G 2017 J. Phys. Chem. C 121 19296Google Scholar

    [50]

    Furchi M M, Pospischil A, Libisch F, Burgdörfer J, Mueller T 2014 Nano Lett. 14 4785Google Scholar

    [51]

    Lee C H, Lee G H, Zande A M, Chen W C, Li Y L, Han M Y, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014 Nat. Nanotechnol. 9 676Google Scholar

    [52]

    Cao G Y, Shang A X, Zhang C, Gong Y P, Li S J, Bao Q L, Li X F 2016 Nano Energy 30 260Google Scholar

  • [1] 段聪, 刘俊杰, 陈永杰, 左慧玲, 董健生, 欧阳钢. MoS2/SiO2界面黏附性能的尺寸和温度效应. 物理学报, doi: 10.7498/aps.73.20231648
    [2] 刘俊杰, 左慧玲, 谭鑫, 董健生. 褶皱状单层GeSe各向异性的能带漏斗效应. 物理学报, doi: 10.7498/aps.20241155
    [3] 胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健. 利用晶体结构工程提升GeSe化合物热电性能的研究. 物理学报, doi: 10.7498/aps.71.20211843
    [4] 孟雨欣, 赵漪凡, 李绍春. 褶皱状蜂窝结构的单层二维材料研究进展. 物理学报, doi: 10.7498/aps.70.20210638
    [5] 胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健. 利用晶体结构工程提升GeSe化合物热电性能的研究. 物理学报, doi: 10.7498/aps.70.20211843
    [6] 陈超, 段芳莉. 氧化石墨烯褶皱行为与结构的分子模拟研究. 物理学报, doi: 10.7498/aps.69.20200651
    [7] 陈璐, 李烨飞, 郑巧玲, 刘庆坤, 高义民, 李博, 周长猛. B2-和B19'-NiTi表面原子弛豫、表面能、电子结构及性能的理论研究. 物理学报, doi: 10.7498/aps.68.20181944
    [8] 金峰, 张振华, 王成志, 邓小清, 范志强. 石墨烯纳米带能带结构及透射特性的扭曲效应. 物理学报, doi: 10.7498/aps.62.036103
    [9] 孙伟峰, 郑晓霞. 第一原理研究界面弛豫对InAs/GaSb超晶格界面结构、能带结构和光学性质的影响. 物理学报, doi: 10.7498/aps.61.117301
    [10] 黄多辉, 王藩侯, 程晓洪, 万明杰, 蒋刚. GeTe和GeSe 分子在外电场下的特性研究. 物理学报, doi: 10.7498/aps.60.123101
    [11] 桑萃萃, 万建杰, 董晨钟, 丁晓彬, 蒋 军. 锂原子光电离过程中的弛豫效应. 物理学报, doi: 10.7498/aps.57.2152
    [12] 邵明珠, 罗诗裕. 正弦平方势与带电粒子沟道效应的能带结构. 物理学报, doi: 10.7498/aps.56.3407
    [13] 马新国, 唐超群, 黄金球, 胡连峰, 薛 霞, 周文斌. 锐钛矿型TiO2(101)面原子几何及弛豫结构的第一性原理计算. 物理学报, doi: 10.7498/aps.55.4208
    [14] 晁月盛, 孙少权, 滕功清, 赖祖涵. 高密度脉冲电流对非晶Fe-Ni-Si-B合金结构弛豫与晶化的促进效应. 物理学报, doi: 10.7498/aps.45.1506
    [15] 李富斌. Fr?hlich极化子的能带非抛物性效应理论. 物理学报, doi: 10.7498/aps.40.610
    [16] 李玉璋, 徐仲英, 葛惟锟, 许继宗, 郑宝贞, 庄蔚华. 多量子阱结构中热载流子弛豫过程中的非平衡声子效应. 物理学报, doi: 10.7498/aps.38.1540
    [17] 范希庆, 王国樑, 刘福绥. 玻璃中结构弛豫的红外发散响应. 物理学报, doi: 10.7498/aps.35.896
    [18] 夏建白. Si,GaAs(111)表面弛豫效应. 物理学报, doi: 10.7498/aps.33.143
    [19] 李景德. 热电弛豫效应. 物理学报, doi: 10.7498/aps.33.1563
    [20] 龙期威, 王桂琴. 金属原子键强度的电子结构分析. 物理学报, doi: 10.7498/aps.17.1-2
计量
  • 文章访问数:  61
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-19
  • 修回日期:  2024-09-08
  • 上网日期:  2024-11-14

/

返回文章
返回