搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SnSe分子外场下的基态性质和激发态性质

王藩侯 黄多辉 杨俊升

引用本文:
Citation:

SnSe分子外场下的基态性质和激发态性质

王藩侯, 黄多辉, 杨俊升

The ground state properties and excitation properties for the SnSe molecule under different external electric fields

Wang Fan-Hou, Huang Duo-Hui, Yang Jun-Sheng
PDF
导出引用
  • 对Sn原子使用SDB-cc-pVTZ基组, Se原子采用6-311++G**基组, 利用密度泛函中的B3LYP方法研究了电场强度为-0.04–0.04 a.u.的外电场对SnSe基态分子的几何结构、 电荷布居分布、 HOMO能级、 LUMO能级、 能隙、 费米能级、 谐振频率和红外光谱强度的影响. 继而使用含时密度泛函(TD-B3LYP) 方法研究了SnSe分子在外场下的激发特性. 结果表明, 外电场的大小和方向对SnSe分子基态的这些性质有明显影响. 在所加的电场范围内(-0.04 a.u.–0.04 a.u.), 随着正向电场的增大, 核间距先减小后增大, 在F=0.03 a .u.时取得最小值0.2317 nm; 分子电偶极矩μ近似线性地增大; EL, EH、 费米能级EF和能隙Eg均减小. 随着正向电场逐渐增大, 分子总能量和谐振频率均先增大后减小; 红外谱强度则先减小后增大, 在F=0.03 a.u.时, 取得最小值 0.1138 km·mol-1. 由基态到第1–10个单重激发态的波长均随着正向电场的增大而增大. 激发能均随着正向电场的增大而减小. 电场的引入可改变SnSe分子激发态出现的顺序并使得一些禁止的跃迁变得可能.
    Effects of electric field ranging from -0.04 to 0.04 a.u., on the equilibrium structure, mulliken atomic charges, the highest occupied molecular orbital(HOMO) energy level, the lowest unoccupied molecular orbital(LUMO) energy level, energy gap, fermi energy, harmonic frequency and infrared intensities of SnSe ground state molecule are investigated by employing density functional (B3LYP) method with SDB-cc-pVTZ for Sn atom and 6-311++G** basis sets for Se atom. The magnitude and direction of the external electric field have significant effects on these characteristics of SnSe molecule. The results show that the bond length is proved to be first decreasing, and then increasing with the increase of the external field, and the minimum value is 0.2317 nm when the field strength is equal to 0.03 a.u.; electric dipole moment is found to increase linearly with the increase of external field, but the HOMO energy EH, LUMO energy EL, energy gap Eg and fermi energy EF are proved to decrease with the increase of external field. The total energy and harmonic frequency are found to first increase, and then decrease, but the infrared intensities are proved to first decrease, and then increase. The wavelengths from ground state to the first ten excited states are found to increase, but the excited energies are decreasing with the increase of the external field. Meanwhile, the sequence of excited states for SnSe molecule can be changed, and some prohibited transition can be allowed under an external field.
    • 基金项目: 四川省教育厅科研基金(批准号: 09ZC048)资助的课题.
    • Funds: Project supported by the Science and Research Foundation of Sichuan Educational Committee, China (Grant No. 09ZC048).
    [1]

    Akifumi O, Ichiro S, Yasuhiko F, Nobuo M, Shunji S 1997 Phys. Rev. B 56 7935

    [2]

    White M G, Rosenberg R A, Tlee S, Shirley D A 1979 J. Electron. Spectrosc Relat Phenom 17 323

    [3]

    Drummond G, Barrow R F 1952 Proc. Phys. Soc. A 65 277

    [4]

    Duan W H, Gu B L, Zhu J L1990 Acta Phys. Sin. 39 437 (in Chinese) [段文晖, 顾秉林, 朱嘉麟 1990 物理学报 39 437]

    [5]

    Nariya B B, Dasadia A K, Bhayani M K, Patel A J, Jani A R 2009 Chalcogenide Letters 10 549

    [6]

    Singh J P, Bedi R K 1990 J. Appl. Phys. 68 2776

    [7]

    Loferski J J 1956 J. Appl. Phys. 27 777

    [8]

    Rodoat M 1975 Acta Electronica 18 345

    [9]

    Rodoat M 1977 Rev. Phys. Appl. 12 411

    [10]

    Parentau M, Carlone M 1990 Phys. Rev. B 41 5227

    [11]

    Nabi Z, Kellou S, Méçabih S, Khalfi A, Benosman N 2003 Materials Science and Engineering B 98 104

    [12]

    Car R, Ciucci G, Quartapelle L 1978 Physica Status Solidi (b) 86 471

    [13]

    Bhatt V P, Gireesan K, Desai C F 1989 Crystal Research and Technology 24 187

    [14]

    Schlecht S, Budde M, Kienle L 2002 Inorg. Chem. 41 6001

    [15]

    Baumgardner W J, Choi J J, Lim Y F, HanrathT 2010 J. Am. Chem. Soc. 132 9519

    [16]

    Taniguchi M, JohnsonR L, Ghijsen J, Cardona M 1990 Phys. Rev. B 42 3634

    [17]

    Franzman M A, Schlenker C W, Thompson M E, Brutchey R L 2010 J. Am. Chem. Soc. 132 4060l

    [18]

    Dang T Q 1984 Physica Status Solidi (a) 86 421

    [19]

    Safak H, Merdan M, Yksel öF 2002 Turk. J. Phys. 26 341

    [20]

    Heribert W, Frank J, Csillag 1979 Z Kristallogr 149 17

    [21]

    AdoubyK, Pérez-Vicente C, Jumas J C, Fourcade R, Touré A A 1998 Z. Kristallogr 213 343

    [22]

    Makinistian L, Albanesi E A 2009 physica status solidi (b) 246 183

    [23]

    Walsh A, Watson G W 2005 J. Phys. Chem. B 109 18868

    [24]

    Vago E E, Barrow R F 1946 Proc. Physic. Soc. 58 538

    [25]

    Colin R, Drowart J 1946 Trans. Faraday Soc. 60 673

    [26]

    Jalbout A F, Li X H, Abou-Rachid H 2007 Int. J. Quantum Chem. 107 522

    [27]

    Xu G L, Liu X F, Xie H X, Zhang X Z, Liu Y F 2011 Chin. Phys. B 20 013101

    [28]

    Xu G L, Xie H X, Yuan W, Zhan X Z, Liu Y F 2012 Acta Phys. Sin. 61 043104 (in Chinese) [徐国亮, 谢会香, 袁伟, 张现周, 刘玉芳 2012 物理学报 61 043104]

    [29]

    Xu G L, Xiao X H, Liu Y F, Sun J F, Zhu Z H 2007 Acta Phys. -Chim. Sin. 23 746 (in Chinese) [徐国亮, 肖小红, 刘玉芳, 孙金锋, 朱正和 2007 物理化学学报 23 746]

    [30]

    Frisch M J Trucks G W Schegd H B 2003 Gaussian 03, Revision B03. Pittsburgh PA: Gaussian Inc.

    [31]

    Xu M, Ling H R F, Li Y F, Yang X D, Wang X L 2012 Acta Phys. Sin. 61 093102 (in Chinese) [徐梅, 令狐荣锋, 李应发, 杨向东, 王晓璐 2012 物理学报 61 093102]

    [32]

    Martin J M L, Sundermann A 2001 J. Chem. Phys. 114 3408

    [33]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure (Vol. 4) Eds.: New York, p.618

    [34]

    Xu G L, Liu Y F, Sun J F, Zhang X Z, Zhu Z H 2007 Acta Phys. Sin 56 5704 (in Chinese) [徐国亮, 刘玉芳, 孙金锋, 张现周, 朱正和 2007 物理学报 56 5704]

  • [1]

    Akifumi O, Ichiro S, Yasuhiko F, Nobuo M, Shunji S 1997 Phys. Rev. B 56 7935

    [2]

    White M G, Rosenberg R A, Tlee S, Shirley D A 1979 J. Electron. Spectrosc Relat Phenom 17 323

    [3]

    Drummond G, Barrow R F 1952 Proc. Phys. Soc. A 65 277

    [4]

    Duan W H, Gu B L, Zhu J L1990 Acta Phys. Sin. 39 437 (in Chinese) [段文晖, 顾秉林, 朱嘉麟 1990 物理学报 39 437]

    [5]

    Nariya B B, Dasadia A K, Bhayani M K, Patel A J, Jani A R 2009 Chalcogenide Letters 10 549

    [6]

    Singh J P, Bedi R K 1990 J. Appl. Phys. 68 2776

    [7]

    Loferski J J 1956 J. Appl. Phys. 27 777

    [8]

    Rodoat M 1975 Acta Electronica 18 345

    [9]

    Rodoat M 1977 Rev. Phys. Appl. 12 411

    [10]

    Parentau M, Carlone M 1990 Phys. Rev. B 41 5227

    [11]

    Nabi Z, Kellou S, Méçabih S, Khalfi A, Benosman N 2003 Materials Science and Engineering B 98 104

    [12]

    Car R, Ciucci G, Quartapelle L 1978 Physica Status Solidi (b) 86 471

    [13]

    Bhatt V P, Gireesan K, Desai C F 1989 Crystal Research and Technology 24 187

    [14]

    Schlecht S, Budde M, Kienle L 2002 Inorg. Chem. 41 6001

    [15]

    Baumgardner W J, Choi J J, Lim Y F, HanrathT 2010 J. Am. Chem. Soc. 132 9519

    [16]

    Taniguchi M, JohnsonR L, Ghijsen J, Cardona M 1990 Phys. Rev. B 42 3634

    [17]

    Franzman M A, Schlenker C W, Thompson M E, Brutchey R L 2010 J. Am. Chem. Soc. 132 4060l

    [18]

    Dang T Q 1984 Physica Status Solidi (a) 86 421

    [19]

    Safak H, Merdan M, Yksel öF 2002 Turk. J. Phys. 26 341

    [20]

    Heribert W, Frank J, Csillag 1979 Z Kristallogr 149 17

    [21]

    AdoubyK, Pérez-Vicente C, Jumas J C, Fourcade R, Touré A A 1998 Z. Kristallogr 213 343

    [22]

    Makinistian L, Albanesi E A 2009 physica status solidi (b) 246 183

    [23]

    Walsh A, Watson G W 2005 J. Phys. Chem. B 109 18868

    [24]

    Vago E E, Barrow R F 1946 Proc. Physic. Soc. 58 538

    [25]

    Colin R, Drowart J 1946 Trans. Faraday Soc. 60 673

    [26]

    Jalbout A F, Li X H, Abou-Rachid H 2007 Int. J. Quantum Chem. 107 522

    [27]

    Xu G L, Liu X F, Xie H X, Zhang X Z, Liu Y F 2011 Chin. Phys. B 20 013101

    [28]

    Xu G L, Xie H X, Yuan W, Zhan X Z, Liu Y F 2012 Acta Phys. Sin. 61 043104 (in Chinese) [徐国亮, 谢会香, 袁伟, 张现周, 刘玉芳 2012 物理学报 61 043104]

    [29]

    Xu G L, Xiao X H, Liu Y F, Sun J F, Zhu Z H 2007 Acta Phys. -Chim. Sin. 23 746 (in Chinese) [徐国亮, 肖小红, 刘玉芳, 孙金锋, 朱正和 2007 物理化学学报 23 746]

    [30]

    Frisch M J Trucks G W Schegd H B 2003 Gaussian 03, Revision B03. Pittsburgh PA: Gaussian Inc.

    [31]

    Xu M, Ling H R F, Li Y F, Yang X D, Wang X L 2012 Acta Phys. Sin. 61 093102 (in Chinese) [徐梅, 令狐荣锋, 李应发, 杨向东, 王晓璐 2012 物理学报 61 093102]

    [32]

    Martin J M L, Sundermann A 2001 J. Chem. Phys. 114 3408

    [33]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure (Vol. 4) Eds.: New York, p.618

    [34]

    Xu G L, Liu Y F, Sun J F, Zhang X Z, Zhu Z H 2007 Acta Phys. Sin 56 5704 (in Chinese) [徐国亮, 刘玉芳, 孙金锋, 张现周, 朱正和 2007 物理学报 56 5704]

  • [1] 李世雄, 陈德良, 张正平, 隆正文, 秦水介. 环形C18在外电场下的基态性质和激发特性. 物理学报, 2020, 69(10): 103101. doi: 10.7498/aps.69.20200268
    [2] 李亚莎, 谢云龙, 黄太焕, 徐程, 刘国成. 基于密度泛函理论的外电场下盐交联聚乙烯分子的结构及其特性. 物理学报, 2018, 67(18): 183101. doi: 10.7498/aps.67.20180808
    [3] 李世雄, 张正平, 隆正文, 秦水介. 硼球烯B40在外电场下的基态性质和光谱特性. 物理学报, 2017, 66(10): 103102. doi: 10.7498/aps.66.103102
    [4] 杨涛, 刘代俊, 陈建钧. 外电场下二氧化硫的分子结构及其特性. 物理学报, 2016, 65(5): 053101. doi: 10.7498/aps.65.053101
    [5] 徐梅, 令狐荣锋, 支启军, 杨向东, 吴位巍. 自由基分子BeH外电场特性. 物理学报, 2016, 65(16): 163102. doi: 10.7498/aps.65.163102
    [6] 吴永刚, 李世雄, 郝进欣, 徐梅, 孙光宇, 令狐荣锋. 外电场下CdSe的基态性质和光谱特性研究. 物理学报, 2015, 64(15): 153102. doi: 10.7498/aps.64.153102
    [7] 李世雄, 吴永刚, 令狐荣锋, 孙光宇, 张正平, 秦水介. ZnSe在外电场下的基态性质和激发特性研究. 物理学报, 2015, 64(4): 043101. doi: 10.7498/aps.64.043101
    [8] 曹欣伟, 任杨, 刘慧, 李姝丽. 强外电场作用下BN分子的结构与激发特性. 物理学报, 2014, 63(4): 043101. doi: 10.7498/aps.63.043101
    [9] 凌智钢, 唐延林, 李涛, 李玉鹏, 魏晓楠. 外电场下二氧化锆的分子结构及其特性. 物理学报, 2014, 63(2): 023102. doi: 10.7498/aps.63.023102
    [10] 徐国亮, 张琳, 路战胜, 刘培, 刘玉芳. 特殊构型Si2N2分子团簇电致激发特性的密度泛函理论研究. 物理学报, 2014, 63(10): 103101. doi: 10.7498/aps.63.103101
    [11] 安跃华, 熊必涛, 邢云, 申婧翔, 李培刚, 朱志艳, 唐为华. 外电场作用下ZnO分子的结构特性研究. 物理学报, 2013, 62(7): 073103. doi: 10.7498/aps.62.073103
    [12] 黄多辉, 王藩侯, 万明杰, 蒋刚. 外场下SnS分子结构及其特性. 物理学报, 2013, 62(1): 013104. doi: 10.7498/aps.62.013104
    [13] 徐国亮, 袁伟, 耿振铎, 刘培, 张琳, 张现周, 刘玉芳. 外场作用下蒽分子的激发特性研究. 物理学报, 2013, 62(7): 073104. doi: 10.7498/aps.62.073104
    [14] 徐国亮, 谢会香, 袁伟, 张现周, 刘玉芳. SiN分子外电场情况下的发光特性 . 物理学报, 2012, 61(4): 043104. doi: 10.7498/aps.61.043104
    [15] 黄多辉, 王藩侯, 程晓洪, 万明杰, 蒋刚. GeTe和GeSe 分子在外电场下的特性研究. 物理学报, 2011, 60(12): 123101. doi: 10.7498/aps.60.123101
    [16] 周业宏, 蔡绍洪. 氯乙烯在外电场下的激发态结构研究. 物理学报, 2010, 59(11): 7749-7755. doi: 10.7498/aps.59.7749
    [17] 徐国亮, 夏要争, 刘雪峰, 张现周, 刘玉芳. 外电场作用下TiO光激发特性研究. 物理学报, 2010, 59(11): 7762-7768. doi: 10.7498/aps.59.7762
    [18] 何建勇, 隆正文, 龙超云, 蔡绍洪. 电场作用下CaS的分子结构和电子光谱. 物理学报, 2010, 59(3): 1651-1657. doi: 10.7498/aps.59.1651
    [19] 徐国亮, 刘雪峰, 夏要争, 张现周, 刘玉芳. 外电场作用下Si2O分子的激发特性. 物理学报, 2010, 59(11): 7756-7761. doi: 10.7498/aps.59.7756
    [20] 黄多辉, 王藩侯, 闵军, 朱正和. 外电场作用下MgO分子的特性研究. 物理学报, 2009, 58(5): 3052-3057. doi: 10.7498/aps.58.3052
计量
  • 文章访问数:  3236
  • PDF下载量:  744
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-11
  • 修回日期:  2012-12-04
  • 刊出日期:  2013-04-05

SnSe分子外场下的基态性质和激发态性质

  • 1. 宜宾学院, 计算物理四川省高等学校重点实验室, 宜宾 644000
    基金项目: 四川省教育厅科研基金(批准号: 09ZC048)资助的课题.

摘要: 对Sn原子使用SDB-cc-pVTZ基组, Se原子采用6-311++G**基组, 利用密度泛函中的B3LYP方法研究了电场强度为-0.04–0.04 a.u.的外电场对SnSe基态分子的几何结构、 电荷布居分布、 HOMO能级、 LUMO能级、 能隙、 费米能级、 谐振频率和红外光谱强度的影响. 继而使用含时密度泛函(TD-B3LYP) 方法研究了SnSe分子在外场下的激发特性. 结果表明, 外电场的大小和方向对SnSe分子基态的这些性质有明显影响. 在所加的电场范围内(-0.04 a.u.–0.04 a.u.), 随着正向电场的增大, 核间距先减小后增大, 在F=0.03 a .u.时取得最小值0.2317 nm; 分子电偶极矩μ近似线性地增大; EL, EH、 费米能级EF和能隙Eg均减小. 随着正向电场逐渐增大, 分子总能量和谐振频率均先增大后减小; 红外谱强度则先减小后增大, 在F=0.03 a.u.时, 取得最小值 0.1138 km·mol-1. 由基态到第1–10个单重激发态的波长均随着正向电场的增大而增大. 激发能均随着正向电场的增大而减小. 电场的引入可改变SnSe分子激发态出现的顺序并使得一些禁止的跃迁变得可能.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回