搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外电场下二氧化硫的分子结构及其特性

杨涛 刘代俊 陈建钧

引用本文:
Citation:

外电场下二氧化硫的分子结构及其特性

杨涛, 刘代俊, 陈建钧

Molecular structure and properties of sulfur dioxide under the external electric field

Yang Tao, Liu Dai-Jun, Chen Jian-Jun
PDF
导出引用
  • 以6-311++g(3d, p)为基组, 采用B3P86方法研究了不同外电场(-0.04-0.04 a.u.)对SO2分子基态的几何参数、电荷分布、能量、电偶极距、最高占据轨道(HOMO)能级、最低占据轨道(LUMO)能级及能隙的影响, 在优化构型的基础上, 采用含时密度泛函(TD-B3P86)方法研究了SO2分子在外电场作用下前9个激发态的激发能、跃迁波长和振子强度. 研究表明: SO2的几何参数与电场强度大小及方向均有明显的依赖关系. 电场由-0.04 a.u. 变化至0.04 a.u.时, 体系的总能量先增加后减小; 偶极矩先减小后增加; HOMO能级一直减小; LUMO能级先增加后减小; 能隙先增加后减小. 激发态的激发能、跃迁波长和振子强度与电场关联均较为复杂, 说明SO2的激发特性易受外电场影响.
    SO2 is not only an important resource but also a notorious air pollutant, so it has attracted increasing attention nowadays. This paper focuses on the influence of external electric field on SO2. In order to obtain more reliable results, the density functional theory B3P86 method is chosen to calculate the values mentioned below. The ground states of SO2 molecule under different strong electric fields ranging from -0.04 a.u. to 0.04 a.u. are optimized by density functional theory B3P86 method with 6-311++g(3d,p) basis sets. The geometric parameters, charge distributions, total energies, dipole moments, the highest occupied molecular orbital (HOMO) energies, the lowest unoccupied molecular orbital (LUMO) energies, energy gaps of SO2 under different external electric fields are obtained, respectively. On the basis of optimized configuration, the excitation energy, transition wavelength and oscillator strength in the same intense external electric field are calculated by the time dependent density functional theory (TD-B3P86) method.#br#The calculated values for geometric parameters of SO2 without external electric field agree well with the available experimental data and other theoretical results. The geometric parameters and charge distribution of SO2 strongly depend on the intensity and direction of external electric field. The total energy of SO2 in the considered range of external electric field first increases and then decreases. On the contrary, the dipole moments of SO2 in different external electric fields ranging from -0.04 a.u. to 0.04 a.u. first decrease and then increase. When the external electric field is -0.04 a.u., the total energy and symmetry of SO2 both reach the maximum values. With the change of external electric field, the LUMO energy first increases and then decreases. The HOMO energy is found to decrease through the variation of the external field. The energy gaps of SO2 are proved to first increase, and then decrease with the variation of external electric field. Through studying the energy gaps of SO2, it is found that the external electric field can affect the chemical reactivity of SO2. The excitation energies, transition wavelengths and oscillator strengths are very complicated with the change of the external electric field. The excitation properties of SO2 molecule are seriously affected by the external electric field.
      通信作者: 刘代俊, liudj@scu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 21076131)资助的课题.
      Corresponding author: Liu Dai-Jun, liudj@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21076131).
    [1]

    Hu S D, Zhang B, Li Z J 2009 Chin. Phys. B 18 315

    [2]

    Kong X L, Luo X L, Niu D M, Zhang X Y, Kai R F, Li H Y 2004 Acta Phys. Sin. 53 1340 (in Chinese) [孔祥蕾, 罗晓琳, 牛冬梅, 张先燚, 阚瑞峰, 李海洋 2004 物理学报 53 1340]

    [3]

    Xia L, Ren H Z, Ri M, Chen J X, Hong Y, Gong Q H 2004 Chin. Phys. 13 1564

    [4]

    Iwamae A, Hishikawa A, Yamanouchi K 2000 J. Phys. B: At. Mol. Opt. Phys. 33 223

    [5]

    Cao X W, Ren Y, Liu H, Li S L 2014 Acta Phys. Sin. 63 043101 (in Chinese) [曹欣伟, 任杨, 刘慧, 李姝丽 2014 物理学报 63 043101]

    [6]

    Hu Z G, Tian Y T, Li X J 2013 Chin. Phys. Lett. 30 087801

    [7]

    Hu S L, Shi T Y 2013 Chin. Phys. B 22 093101

    [8]

    Xiong Y Y, Niu Y Q, Tan H Z, Liu Y Y, Wang X B 2014 Appl. Therm. Eng. 63 272

    [9]

    Humeres E, Castro K M, Smaniotto A, et al. 2014 J. Phys. Org. Chem. 27 344

    [10]

    Ma S C, Yao J J, Jin X, Zhang B 2011 Sci. China: Technol. Sc. 54 2321

    [11]

    Huang C L, Chen I C, Merer A J, Ni C K, Kung A H 2001 J. Chem. Phys. 114 1187

    [12]

    Lu C W, Wu Y J, Lee Y P, Zhu R S, Lin M C 2004 J. Chem. Phys. 121 8271

    [13]

    Zuniga J, Bastida A, Requena A 2001 J. Chem. Phys. 115 139

    [14]

    Varandas A J C, Rodrigues S P J 2002 Spectrochim. Acta Part A 58 629

    [15]

    Rodrigues S P J, Sabin J A, Varandas A J C 2002 J. Phys. Chem. A 106 556

    [16]

    Rodrigues S P J, Varandas A J C 2003 J. Phys. Chem. A 107 5369

    [17]

    Grozema F C, Telesca R, Jonkman H T, Siebbeles L D A, Snijders J G 2001 J. Chem. Phys. 115 10014

    [18]

    Kjellberg P, He Z, Pullerits T 2003 J. Phys. Chem. B 107 13737

    [19]

    Zeng J Y 1998 Introduction to Quantum Mechanics (Beijing: Peking University Press) pp339-341 (in Chinese) [曾谨言 1998 量子力学导论(北京: 北京大学出版社)第339-341页]

    [20]

    Morino Y, Kikuchi Y, Saito S E H 1964 J. Mol. Spectrosc. 13 95

    [21]

    Brown R D, Burden F R, Mohay G M 1969 Aust. J. Chem. 22 251

    [22]

    Lu C W, Wu Y J, Lee Y P, Zhu R S, Lin C J 2003 J. Phys. Chem. A 107 11020

    [23]

    Patel D, Margolese D, Dyke T R 1979 J. Chem. Phys. 70 2740

    [24]

    Li C Y, Zhang L J, Zhao J M, Jia S T 2012 Acta Phys. Sin. 61 163202 (in Chinese) [李昌勇, 张临杰, 赵建明, 贾锁堂 2012 物理学报 61 163202]

    [25]

    Li J, Liu X Y, Zhu Z H, Sheng Y 2012 Chin. Phys. B 21 033101

  • [1]

    Hu S D, Zhang B, Li Z J 2009 Chin. Phys. B 18 315

    [2]

    Kong X L, Luo X L, Niu D M, Zhang X Y, Kai R F, Li H Y 2004 Acta Phys. Sin. 53 1340 (in Chinese) [孔祥蕾, 罗晓琳, 牛冬梅, 张先燚, 阚瑞峰, 李海洋 2004 物理学报 53 1340]

    [3]

    Xia L, Ren H Z, Ri M, Chen J X, Hong Y, Gong Q H 2004 Chin. Phys. 13 1564

    [4]

    Iwamae A, Hishikawa A, Yamanouchi K 2000 J. Phys. B: At. Mol. Opt. Phys. 33 223

    [5]

    Cao X W, Ren Y, Liu H, Li S L 2014 Acta Phys. Sin. 63 043101 (in Chinese) [曹欣伟, 任杨, 刘慧, 李姝丽 2014 物理学报 63 043101]

    [6]

    Hu Z G, Tian Y T, Li X J 2013 Chin. Phys. Lett. 30 087801

    [7]

    Hu S L, Shi T Y 2013 Chin. Phys. B 22 093101

    [8]

    Xiong Y Y, Niu Y Q, Tan H Z, Liu Y Y, Wang X B 2014 Appl. Therm. Eng. 63 272

    [9]

    Humeres E, Castro K M, Smaniotto A, et al. 2014 J. Phys. Org. Chem. 27 344

    [10]

    Ma S C, Yao J J, Jin X, Zhang B 2011 Sci. China: Technol. Sc. 54 2321

    [11]

    Huang C L, Chen I C, Merer A J, Ni C K, Kung A H 2001 J. Chem. Phys. 114 1187

    [12]

    Lu C W, Wu Y J, Lee Y P, Zhu R S, Lin M C 2004 J. Chem. Phys. 121 8271

    [13]

    Zuniga J, Bastida A, Requena A 2001 J. Chem. Phys. 115 139

    [14]

    Varandas A J C, Rodrigues S P J 2002 Spectrochim. Acta Part A 58 629

    [15]

    Rodrigues S P J, Sabin J A, Varandas A J C 2002 J. Phys. Chem. A 106 556

    [16]

    Rodrigues S P J, Varandas A J C 2003 J. Phys. Chem. A 107 5369

    [17]

    Grozema F C, Telesca R, Jonkman H T, Siebbeles L D A, Snijders J G 2001 J. Chem. Phys. 115 10014

    [18]

    Kjellberg P, He Z, Pullerits T 2003 J. Phys. Chem. B 107 13737

    [19]

    Zeng J Y 1998 Introduction to Quantum Mechanics (Beijing: Peking University Press) pp339-341 (in Chinese) [曾谨言 1998 量子力学导论(北京: 北京大学出版社)第339-341页]

    [20]

    Morino Y, Kikuchi Y, Saito S E H 1964 J. Mol. Spectrosc. 13 95

    [21]

    Brown R D, Burden F R, Mohay G M 1969 Aust. J. Chem. 22 251

    [22]

    Lu C W, Wu Y J, Lee Y P, Zhu R S, Lin C J 2003 J. Phys. Chem. A 107 11020

    [23]

    Patel D, Margolese D, Dyke T R 1979 J. Chem. Phys. 70 2740

    [24]

    Li C Y, Zhang L J, Zhao J M, Jia S T 2012 Acta Phys. Sin. 61 163202 (in Chinese) [李昌勇, 张临杰, 赵建明, 贾锁堂 2012 物理学报 61 163202]

    [25]

    Li J, Liu X Y, Zhu Z H, Sheng Y 2012 Chin. Phys. B 21 033101

  • [1] 李亚莎, 孙林翔, 周筱, 陈凯, 汪辉耀. 基于密度泛函理论的外电场下C5F10O的结构及其激发特性. 物理学报, 2020, 69(1): 013101. doi: 10.7498/aps.69.20191455
    [2] 李世雄, 陈德良, 张正平, 隆正文, 秦水介. 环形C18在外电场下的基态性质和激发特性. 物理学报, 2020, 69(10): 103101. doi: 10.7498/aps.69.20200268
    [3] 杜建宾, 冯志芳, 张倩, 韩丽君, 唐延林, 李奇峰. 外电场作用下MoS2的分子结构和电子光谱. 物理学报, 2019, 68(17): 173101. doi: 10.7498/aps.68.20190781
    [4] 冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟. 外电场辅助化学气相沉积方法制备网格状β-Ga2O3纳米线及其特性研究. 物理学报, 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [5] 李世雄, 张正平, 隆正文, 秦水介. 硼球烯B40在外电场下的基态性质和光谱特性. 物理学报, 2017, 66(10): 103102. doi: 10.7498/aps.66.103102
    [6] 吴永刚, 李世雄, 郝进欣, 徐梅, 孙光宇, 令狐荣锋. 外电场下CdSe的基态性质和光谱特性研究. 物理学报, 2015, 64(15): 153102. doi: 10.7498/aps.64.153102
    [7] 李世雄, 吴永刚, 令狐荣锋, 孙光宇, 张正平, 秦水介. ZnSe在外电场下的基态性质和激发特性研究. 物理学报, 2015, 64(4): 043101. doi: 10.7498/aps.64.043101
    [8] 曹欣伟, 任杨, 刘慧, 李姝丽. 强外电场作用下BN分子的结构与激发特性. 物理学报, 2014, 63(4): 043101. doi: 10.7498/aps.63.043101
    [9] 王藩侯, 黄多辉, 杨俊升. SnSe分子外场下的基态性质和激发态性质. 物理学报, 2013, 62(7): 073102. doi: 10.7498/aps.62.073102
    [10] 凌智钢, 唐延林, 李涛, 李玉鹏, 魏晓楠. 外电场下2,2,5,5-四氯联苯的分子结构与电子光谱. 物理学报, 2013, 62(22): 223102. doi: 10.7498/aps.62.223102
    [11] 王焯如, 周斌, 王珊珊, 杨素娜. 应用多光路主动差分光学吸收光谱仪观测大气污染物的空间分布. 物理学报, 2011, 60(6): 060703. doi: 10.7498/aps.60.060703
    [12] 黄多辉, 王藩侯, 程晓洪, 万明杰, 蒋刚. GeTe和GeSe 分子在外电场下的特性研究. 物理学报, 2011, 60(12): 123101. doi: 10.7498/aps.60.123101
    [13] 徐国亮, 刘雪峰, 夏要争, 张现周, 刘玉芳. 外电场作用下Si2O分子的激发特性. 物理学报, 2010, 59(11): 7756-7761. doi: 10.7498/aps.59.7756
    [14] 徐国亮, 夏要争, 刘雪峰, 张现周, 刘玉芳. 外电场作用下TiO光激发特性研究. 物理学报, 2010, 59(11): 7762-7768. doi: 10.7498/aps.59.7762
    [15] 周业宏, 蔡绍洪. 氯乙烯在外电场下的激发态结构研究. 物理学报, 2010, 59(11): 7749-7755. doi: 10.7498/aps.59.7749
    [16] 徐国亮, 吕文静, 刘玉芳, 朱遵略, 张现周, 孙金锋. 外电场作用下二氧化硅分子的光激发特性研究. 物理学报, 2009, 58(5): 3058-3063. doi: 10.7498/aps.58.3058
    [17] 徐国亮, 肖小红, 耿振铎, 刘玉芳, 朱正和. 甲基乙烯基硅酮在外场作用下的光激发特性研究. 物理学报, 2007, 56(9): 5196-5201. doi: 10.7498/aps.56.5196
    [18] 魏 群, 杨子元, 王参军, 许启明. 轴对称晶场中d3离子激发态对4A2基态自旋哈密顿参量的影响. 物理学报, 2007, 56(1): 507-511. doi: 10.7498/aps.56.507
    [19] 袁勇波, 刘玉真, 邓开明, 杨金龙. SiN团簇光电子能谱的指认. 物理学报, 2006, 55(9): 4496-4500. doi: 10.7498/aps.55.4496
    [20] 徐国亮, 朱正和, 马美仲, 谢安东. 甲烷在外场作用下的光激发特性研究. 物理学报, 2005, 54(7): 3087-3093. doi: 10.7498/aps.54.3087
计量
  • 文章访问数:  4102
  • PDF下载量:  213
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-21
  • 修回日期:  2015-12-10
  • 刊出日期:  2016-03-05

外电场下二氧化硫的分子结构及其特性

  • 1. 四川大学化学工程学院, 成都 610044
  • 通信作者: 刘代俊, liudj@scu.edu.cn
    基金项目: 国家自然科学基金(批准号: 21076131)资助的课题.

摘要: 以6-311++g(3d, p)为基组, 采用B3P86方法研究了不同外电场(-0.04-0.04 a.u.)对SO2分子基态的几何参数、电荷分布、能量、电偶极距、最高占据轨道(HOMO)能级、最低占据轨道(LUMO)能级及能隙的影响, 在优化构型的基础上, 采用含时密度泛函(TD-B3P86)方法研究了SO2分子在外电场作用下前9个激发态的激发能、跃迁波长和振子强度. 研究表明: SO2的几何参数与电场强度大小及方向均有明显的依赖关系. 电场由-0.04 a.u. 变化至0.04 a.u.时, 体系的总能量先增加后减小; 偶极矩先减小后增加; HOMO能级一直减小; LUMO能级先增加后减小; 能隙先增加后减小. 激发态的激发能、跃迁波长和振子强度与电场关联均较为复杂, 说明SO2的激发特性易受外电场影响.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回