搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外电场下CdSe的基态性质和光谱特性研究

吴永刚 李世雄 郝进欣 徐梅 孙光宇 令狐荣锋

引用本文:
Citation:

外电场下CdSe的基态性质和光谱特性研究

吴永刚, 李世雄, 郝进欣, 徐梅, 孙光宇, 令狐荣锋

Properties of ground state and spectrum of CdSe in different external electric fields

Wu Yong-Gang, Li Shi-Xiong, Hao Jin-Xin, Xu Mei, Sun Guang-Yu, Linghu Rong-Feng
PDF
导出引用
  • 采用密度泛函(DFT)B3PW91方法在Lanl2dz基组下优化得到CdSe分子的基态稳定构型, 并研究了外电场对CdSe基态分子的总能量、HOMO能级、LUMO能级、能隙、电偶极矩μ、电荷布居、红外光谱的影响. 在相同的基组下用TD-DFT 方法计算了外电场下CdSe分子的前9个激发态的激发能、激发波长和振子强度. 结果表明: 无电场时CdSe分子的激发波长与实验结果符合较好, 相应的激发能也很接近. 随着电场增加, CdSe基态分子键长、偶极矩、红外谱强度先减小后增大; HOMO能级、LUMO能级、能隙随电场增加而减小; 总能量、谐振频率则是先增大后减小. 此外, 外电场对CdSe分子的激发能, 激发波长和振子强度均有较大影响.
    Density functional theoretical (B3PW91) method with LANL2 DZ basis sets has been used to study the equilibrium structure, total energy, the highest occupied molecular orbital (HOMO) energy level, the lowest unoccupied molecular orbital(LUMO) energy level, energy gap, dipole moment, atomic charge distribution, infrared intensities of CdSe ground state molecule etc. in different intense electric fields. The excitation energy, wavelengths and oscillator strengths in ground state and the first nine different excited states are investigated by the time-dependent density functional (B3PW91) method in external electric fields. Results show that the excitation wavelength is in agreement with the experimental result and the excitation energy is close to the experimental data. With the increase of the external field, the bond length, electric dipole moment, infrared intensities are observed to decrease first, and increase afterwards. But the HOMO energy, LUMO energy, energy gap are seen to decrease. And the total energy and harmonic frequency are found to increase first, and then decrease. In addition, the external electric fields have significant effects on the excitation energy, wavelength and oscillator strengths of CdSe molecule.
    • 基金项目: 国家自然科学基金(批准号: 11364007)、贵州省教育厅自然科学基金(批准号: 黔教合KY字(2012)051号)和贵州省科学技术基金(批准号: 黔科合J字[2013]2219号)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11364007), Guizhou Education Department Natural Science Foundation of China (Grant No. KY[2012]051), the Guizhou Science and Technology Foundation of China (Grant No. QKHJ,[2013]2219).
    [1]

    Murray C B, Kagan C R, Bawendi M G 2000 Annu. Rev. Mater. Sci. 30 545

    [2]

    Alivisatos A P 1996 J. Phys. Chem. 100 13226

    [3]

    Coe S, Woo W K, Bawendi M Bulović V 2002 Nature 420 800

    [4]

    Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A M, Gambhir S S, Weiss S 2005 Science 307 538

    [5]

    Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A 2003 Science 302 442

    [6]

    Huynh W U, Dittmer J J, Alivisatos A P 2002 Science 295 2425

    [7]

    Troparevsky M C, Chelikowsky J R 2001 J. Chem. Phys. 114 943

    [8]

    Jha P C, Seal P, Sen S, Ögren H, Chakrabarti S 2008 Comput. Mater. Sci. 44 728

    [9]

    Matxain J M, Mercero J M, Fowler J E, Jesus M. Ugalde 2004 J. Phys. Chem. A 108 10502

    [10]

    Yang P, Tretiak S, Masunov A E, Ivanov S 2008 J. Chem. Phys. 129 074709

    [11]

    Wu S X, Liu H Z, Liu H M, Wu Z S, Du Z L, Schelly Z A 2007 Nanotechnology 18 485607

    [12]

    Yu M, Fernando G W, Li R, Papadimitrakopoulos F, Shi N, Ramprasad R 2006 Appl. Phys. Lett. 88 231910

    [13]

    Nadler R, Sanz J F 2013 Theor. Chem. Acc. 132 1

    [14]

    Kasuya A, Sivamohan R, Barnakov Y A, Dmitruk I M, Nirasawa T, Romanyuk V R, Kumar V, Mamykin S V, Tohji K, Jeyadevan B, Shinoda K, Kudo T, Terasaki O, Liu Z, Belosludov R V, Sundararajan V, Kawazoe Y 2004 Nat. Mater. 3 99

    [15]

    Nagaoka M, Ishii S, Noguchi Y, Ohno K 2008 Mater. Trans. 49 2420

    [16]

    Ma M Z, Zhu Z H, Chen X J, Xu G L, Zhang Y B, Mao H P, Shen X H 2005 Chin. Phys. Soc. 14 1101

    [17]

    Cooper G, Burton G R, Chan W F, Brion C E 1995 Chem. Phys. 196 293

    [18]

    Yao D Y, Xu G L, Liu X F, Zhang X Z, Liu Y F 2011 Chin. Phys. B 20 103101

    [19]

    Xu G L, Liu X F, Xie H X, Zhang X Z, Liu Y F 2010 Chin. Phys. B 19 113101

    [20]

    Karamanis P, Maroulis G, Pouchan C 2006 J. Chem. Phys. 124 071101

    [21]

    Zeng W, Ding F J, Zhao K Q 2010 J. Sichuan Normal University ( Natural Science) 33 228 (in Chinese) [曾薇, 丁涪江, 赵可清 2010 四川师范大学学报 (自然科学版) 33 228]

    [22]

    Li S X, Wu Y G, Linghu R F, Sun G Y, Zhang Z P, Qin S J 2015 Acta Phys. Sin. 64 043101 (in Chinese) [李世雄, 吴永刚, 令狐荣锋, 孙光宇, 张正平, 秦水介 2015 物理学报 64 043101]

    [23]

    Cao X W, Ren Y, Liu H, Li S L 2014 Acta Phys. Sin. 63 043101 (in Chinese) [曹欣伟, 任杨, 刘慧, 李姝丽 2014 物理学报 63 043101]

    [24]

    Herzberg G (Translated by Wang D C) 1983 Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules (Beijing: Science Press) pp50 (in Chinese) [格哈德·赫兹堡 著(王鼎昌 译) 1983 分子光谱与分子结构(第一卷)(北京: 科学出版社)第50页]

  • [1]

    Murray C B, Kagan C R, Bawendi M G 2000 Annu. Rev. Mater. Sci. 30 545

    [2]

    Alivisatos A P 1996 J. Phys. Chem. 100 13226

    [3]

    Coe S, Woo W K, Bawendi M Bulović V 2002 Nature 420 800

    [4]

    Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A M, Gambhir S S, Weiss S 2005 Science 307 538

    [5]

    Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A 2003 Science 302 442

    [6]

    Huynh W U, Dittmer J J, Alivisatos A P 2002 Science 295 2425

    [7]

    Troparevsky M C, Chelikowsky J R 2001 J. Chem. Phys. 114 943

    [8]

    Jha P C, Seal P, Sen S, Ögren H, Chakrabarti S 2008 Comput. Mater. Sci. 44 728

    [9]

    Matxain J M, Mercero J M, Fowler J E, Jesus M. Ugalde 2004 J. Phys. Chem. A 108 10502

    [10]

    Yang P, Tretiak S, Masunov A E, Ivanov S 2008 J. Chem. Phys. 129 074709

    [11]

    Wu S X, Liu H Z, Liu H M, Wu Z S, Du Z L, Schelly Z A 2007 Nanotechnology 18 485607

    [12]

    Yu M, Fernando G W, Li R, Papadimitrakopoulos F, Shi N, Ramprasad R 2006 Appl. Phys. Lett. 88 231910

    [13]

    Nadler R, Sanz J F 2013 Theor. Chem. Acc. 132 1

    [14]

    Kasuya A, Sivamohan R, Barnakov Y A, Dmitruk I M, Nirasawa T, Romanyuk V R, Kumar V, Mamykin S V, Tohji K, Jeyadevan B, Shinoda K, Kudo T, Terasaki O, Liu Z, Belosludov R V, Sundararajan V, Kawazoe Y 2004 Nat. Mater. 3 99

    [15]

    Nagaoka M, Ishii S, Noguchi Y, Ohno K 2008 Mater. Trans. 49 2420

    [16]

    Ma M Z, Zhu Z H, Chen X J, Xu G L, Zhang Y B, Mao H P, Shen X H 2005 Chin. Phys. Soc. 14 1101

    [17]

    Cooper G, Burton G R, Chan W F, Brion C E 1995 Chem. Phys. 196 293

    [18]

    Yao D Y, Xu G L, Liu X F, Zhang X Z, Liu Y F 2011 Chin. Phys. B 20 103101

    [19]

    Xu G L, Liu X F, Xie H X, Zhang X Z, Liu Y F 2010 Chin. Phys. B 19 113101

    [20]

    Karamanis P, Maroulis G, Pouchan C 2006 J. Chem. Phys. 124 071101

    [21]

    Zeng W, Ding F J, Zhao K Q 2010 J. Sichuan Normal University ( Natural Science) 33 228 (in Chinese) [曾薇, 丁涪江, 赵可清 2010 四川师范大学学报 (自然科学版) 33 228]

    [22]

    Li S X, Wu Y G, Linghu R F, Sun G Y, Zhang Z P, Qin S J 2015 Acta Phys. Sin. 64 043101 (in Chinese) [李世雄, 吴永刚, 令狐荣锋, 孙光宇, 张正平, 秦水介 2015 物理学报 64 043101]

    [23]

    Cao X W, Ren Y, Liu H, Li S L 2014 Acta Phys. Sin. 63 043101 (in Chinese) [曹欣伟, 任杨, 刘慧, 李姝丽 2014 物理学报 63 043101]

    [24]

    Herzberg G (Translated by Wang D C) 1983 Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules (Beijing: Science Press) pp50 (in Chinese) [格哈德·赫兹堡 著(王鼎昌 译) 1983 分子光谱与分子结构(第一卷)(北京: 科学出版社)第50页]

  • [1] 郭状, 欧阳峰, 卢志舟, 王梦宇, 谭庆贵, 谢成峰, 魏斌, 何兴道. 氟化镁微瓶腔光频梳光谱分析及优化. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231126
    [2] 齐刚, 黄印博, 凌菲彤, 杨佳琦, 黄俊, 杨韬, 张雷雷, 卢兴吉, 袁子豪, 曹振松. 多微管阵列结构腔-原子吸收光谱测量Rb同位素比. 物理学报, 2023, 72(5): 053201. doi: 10.7498/aps.72.20221963
    [3] 焦宝宝. 基于原子核密度的核电荷半径新关系. 物理学报, 2023, 72(11): 112101. doi: 10.7498/aps.72.20230126
    [4] 庄杰, 韩瑞, 季振宇, 石富坤. 量化电导率模型参数多样性导致的脉冲电场消融预测的不确定性. 物理学报, 2023, 72(14): 147701. doi: 10.7498/aps.72.20230203
    [5] 蒋东镔, 张颖, 姜大朋, 朱斌, 李纲, 孙立, 黄征, 卢峰, 谢娜, 周凯南, 粟敬钦. Nd, Gd:SrF2晶体材料在宽带放大中的光谱增益特性. 物理学报, 2023, 72(22): 224208. doi: 10.7498/aps.72.20230972
    [6] 毕思昭, 彭朝晖, 王光旭, 谢志敏, 张灵珊. 西太平洋远距离声传播特性. 物理学报, 2022, 71(21): 214302. doi: 10.7498/aps.71.20220566
    [7] 吴逢川, 林沂, 武博, 付云起. 里德伯原子的射频脉冲响应特性. 物理学报, 2022, 71(20): 207402. doi: 10.7498/aps.71.20220972
    [8] 李斌, 张国峰, 陈瑞云, 秦成兵, 胡建勇, 肖连团, 贾锁堂. 单量子点光谱与激子动力学研究进展. 物理学报, 2022, 71(6): 067802. doi: 10.7498/aps.71.20212050
    [9] 郑雅欣, 那仁满都拉. 可压缩液体中气泡的声空化特性. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211266
    [10] 刘强, 何军, 王军民. 室温铯原子气室窄线宽相干布居振荡光谱. 物理学报, 2021, 70(16): 163202. doi: 10.7498/aps.70.20210405
    [11] 尹俊豪, 杨涛, 印建平. 基于${{\bf{A}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Pi}} }}_{{\boldsymbol{1/2}}}{\boldsymbol{\leftarrow }}{{\bf{X}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Sigma }}}}_{{\boldsymbol{1/2}}}$跃迁的CaH分子激光冷却光谱理论研究. 物理学报, 2021, 70(16): 163302. doi: 10.7498/aps.70.20210522
    [12] 李子龙, 万源. 强关联电子体系二维相干光谱的理论研究评述. 物理学报, 2021, 70(23): 230308. doi: 10.7498/aps.70.20211556
    [13] 刘尚阔, 王涛, 李坤, 曹昆, 张玺斌, 周艳, 赵建科, 姚保利. 光源光谱特性对空间相机调制传递函数检测的影响. 物理学报, 2021, 70(13): 134208. doi: 10.7498/aps.70.20201575
    [14] 李亚莎, 刘世冲, 刘清东, 夏宇, 胡豁然, 李光竹. 外电场下含有缔合缺陷的ZnO/β-Bi2O3界面电学性能研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210635
    [15] 徐强, 司雪, 佘维汉, 杨光敏. 超电容储能电极材料的密度泛函理论研究. 物理学报, 2021, 70(10): 107301. doi: 10.7498/aps.70.20201988
    [16] 张芳, 贾利群, 孙现亭, 戴宪起, 黄奇祥, 李伟. 电场对graphene/InSe范德瓦耳斯异质结肖特基势垒的调控. 物理学报, 2020, 69(15): 157302. doi: 10.7498/aps.69.20191987
    [17] 孙肖宁, 曲兆明, 王庆国, 袁扬, 刘尚合. 电场诱导二氧化钒绝缘-金属相变的研究进展. 物理学报, 2019, 68(10): 107201. doi: 10.7498/aps.68.20190136
    [18] 蔡梦圆, 唐春梅, 张秋月. Li离子电池负极材料石墨炔在B, N掺杂调控下的储Li性能优化. 物理学报, 2019, 68(21): 213601. doi: 10.7498/aps.68.20191161
    [19] 李酽, 张琳彬, 李娇, 连晓雪, 朱俊武. 电场条件下氧化锌结晶特性及极化产物的拉曼光谱分析. 物理学报, 2019, 68(7): 070701. doi: 10.7498/aps.68.20181961
    [20] 杜建宾, 冯志芳, 张倩, 韩丽君, 唐延林, 李奇峰. 外电场作用下MoS2的分子结构和电子光谱. 物理学报, 2019, 68(17): 173101. doi: 10.7498/aps.68.20190781
计量
  • 文章访问数:  4926
  • PDF下载量:  242
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-27
  • 修回日期:  2015-03-26
  • 刊出日期:  2015-08-05

/

返回文章
返回