搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下9-芴酮衍生物的变色效应

王亚楠 陈姿润 王亚云 李爱森 李磊 李茜 王凯

引用本文:
Citation:

高压下9-芴酮衍生物的变色效应

王亚楠, 陈姿润, 王亚云, 李爱森, 李磊, 李茜, 王凯
cstr: 32037.14.aps.74.20250635

Piezochromic phenomena of 9-fluorenone derivatives

WANG Yanan, CHEN Zirun, WANG Yayun, LI Aisen, LI Lei, LI Qian, WANG Kai
cstr: 32037.14.aps.74.20250635
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 压致变色有机发光材料是智能发光材料的重要分支, 凭借多色切换特性在显示、传感和生物医学等领域备受关注. 然而, 利用合理分子设计有效促进材料的压致光谱位移仍是该领域的重要挑战. 本研究首先基于二苯胺(DPA)给体与9-芴酮(FO)受体设计并制备了给体-受体型DPA-FO分子. 其荧光发射波长随压力变化的压力系数为10.7 nm/GPa, 展现出明显的压致变色效应. 为了优化该力敏发光特性, 我们基于区域选择性结构设计, 在给体中引入分子构象“锁”并增强给体推电子效应, 以9, 9-二甲基吖啶(DMAcr)作为给体基元, 设计合成了具有更强分子内电荷转移特性的DMAcr-FO分子. 该分子荧光发射波长的压力系数显著提升至17.5 nm/GPa. 进一步结构表征表明, 该现象源于DMAcr-FO更为显著的压致结构收缩. 本研究不仅有助于深入理解力敏智能有机发光材料的结构-性质关系, 也为新型压致变色发光材料的设计提供了新思路.
    Piezochromic luminescent materials with multi-color switching have received considerable attention in fields such as displays, sensors, and biomedicine. However, enhancing the sensitivity of piezochromic color change through rational molecular design remains a significant challenge. Herein, we report the design, synthesis and high-pressure study of two 9-fluorenone derivatives of DPA (diphenylamine)-FO and DMAcr (9,9-dimethylcarbazine)-FO, realizing pronounced piezochromic phenomena in both emission colors and crystal colors. DPA-FO features a classic donor–acceptor molecular architecture. Its emission wavelength is highly sensitive to the solvent polarity, and as polarity increases, the redshift continues, indicating the emission nature of intramolecular charge transfer (ICT) luminescence. Under pressure, the emission color gradually changes from yellow to reddish brown, and a pressure coefficient of the emission wavelength is 10.7 nm/GPa. To amplify the piezochromic response, the donor unit is strategically modified by replacing the DPA group with DMAcr, a donor with stronger electron-donating ability. The resulting compound, DMAcr-FO, exhibits a more pronounced ICT process, as evidenced by its higher sensitivity of luminescence to solvent polarity. Under pressure, its emission color gradually changes from yellow to deep red. Correspondingly, the pressure coefficient of the emission wavelength increases 17.5 nm/GPa. Pressure-dependent UV-Vis absorption spectra reveal a continuous redshift in the absorption edge of both derivatives, attributed to structural shrinkage caused by enhanced orbital coupling. Notably, DMAcr-FO exhibits more significant changes in absorption edge and Stokes shift, indicating more substantial structural deformation under pressure. In addition, compared with DPA-FO, the infrared (IR) modes of DMAcr-FO present higher shifting rates with the increase of pressure, which also supports the above conclusion. Meanwhile, with the increase of pressure, the considerable structural distortion is also one of the factors that make DMAcr-FO has a more significant piezochromic phenomenon. This study not only deepens the understanding of structure–property relationships in piezochromic materials but also offers a viable strategy for designing high-performance piezo-responsive luminophores through tailored molecular engineering.
      通信作者: 李茜, liqian@lcu.edu.cn ; 王凯, kaiwang@lcu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12174146)资助的课题.
      Corresponding author: LI Qian, liqian@lcu.edu.cn ; WANG Kai, kaiwang@lcu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12174146).
    [1]

    Li Q Q, Li Z 2020 Acc. Chem. Res. 53 962Google Scholar

    [2]

    Shao B, Jin R H, Li A S, Liu Y J, Li B, Xu S P, Xu W Q, Xu B, Tian W J 2019 J. Mater. Chem. C 7 3263Google Scholar

    [3]

    Jayaraman A, Laboratories B, Hill M, Jersey N 1983 Rev. Mod. Phys. 55 65Google Scholar

    [4]

    郭宏伟, 刘然, 王玲瑞, 崔金星, 宋波, 王凯, 刘冰冰, 邹勃 2017 物理学报 66 030701Google Scholar

    Guo H W, Liu R, Wang L R, Cui J X, Song B, Wang K, Liu B B, Zou B 2017 Acta Phys. Sin. 66 030701Google Scholar

    [5]

    王君龙, 张林基, 刘其军, 陈元正, 沈如, 何竹, 唐斌, 刘秀茹 2017 物理学报 66 166201Google Scholar

    Wang J L, Zhang L J, Liu Q J, Chen Y Z, Shen R, He Z, Tang B, Liu X R 2017 Acta Phys. Sin. 66 166201Google Scholar

    [6]

    Qi Q K, Qian J Y, Tan X, Zhang J B, Wang L J, Xu B, Zou B, Tian W J 2015 Adv. Funct. Mater. 25 4005Google Scholar

    [7]

    Nagura K, Saito S, Yusa H, Yamawaki H, Fujihisa H, Sato H, Shimoikeda Y, Yamaguchi S 2013 J. Am. Chem. Soc. 135 10322Google Scholar

    [8]

    Zhai C G, Yin X, Niu S F, Yao M G, Hu S H, Dong J J, Shang Y C, Wang Z G, Li Q J, Sundqvist B, Liu B B 2021 Nat. Commun. 12 4084Google Scholar

    [9]

    Liu Y J, Zeng Q X, Zou B, Liu Y, Xu B, Tian W J 2018 Angew. Chem. Int. Ed. 57 15670Google Scholar

    [10]

    Sui Q, Yuan Y, Yang N N, Li X, Gong T, Gao E Q, Wang L 2017 J. Mater. Chem. C 5 12400Google Scholar

    [11]

    Chen P Y, Curry M, Meyer T J 1989 Inorg. Chem. 28 2271

    [12]

    Wang E J, Lam J W Y, Hu R R, Zhang C, Zhao Y S, Tang B Z 2014 J. Mater. Chem. C 2 1801Google Scholar

    [13]

    Meng L C, Ma X B, Jiang S, Zhang S, Wu Z Y, Xu B, Lei Z, Liu L J, Tian W J 2020 CCS Chem. 2 2084Google Scholar

    [14]

    Jia H, Sun X N, Meng X M, Wu M, Li A S, Yang M, Wang C Y, Yang J X, Wang K, Li Q, Li L 2024 Mater. Chem. Front. 8 3064Google Scholar

    [15]

    Shen H, Li Y J, Li Y L 2020 Aggregate 1 57Google Scholar

    [16]

    Neha, Kaur N 2024 Coord. Chem. Rev. 521 216173Google Scholar

    [17]

    Kulkarni A P, Kong X X, Jenekhe S A 2006 Macromolecules 39 8699Google Scholar

    [18]

    Panthi K, El-Khoury P Z, Tarnovsky A N, Kinstle T H 2010 Tetrahedron 66 9641Google Scholar

    [19]

    Yang L, Zhu Y Q, Wu J L, Hu B, Pang Z G, Lu Z Y, Zhao S L, Huang Y 2019 Dyes Pigm. 171 107763Google Scholar

    [20]

    Zeng W X, Lai H Y, Lee W K, Jiao M, Shiu Y J, Zhong C, Gong S L, Zhou T, Xie G H, Sarma M, Wong K T, Wu C C, Yang C L 2018 Adv. Mater. 30 1704961Google Scholar

    [21]

    Liu M Y, Li H B, Ma H W, Yao C X, Zhao F G, Han S, Zhang Z Q, Wang N, Yin X D 2025 ACS Appl. Mater. Interfaces 17 21509Google Scholar

    [22]

    Makula P, Pacia M, Macyk W 2018 J. Phys. Chem. Lett. 9 6814Google Scholar

    [23]

    Ceriani C, Corsini F, Mattioli G, Mattiello S, Testa D, Po R, Botta C, Griffini G, Beverina L 2021 J. Mater. Chem. C 9 14815Google Scholar

    [24]

    Naito H, Nishino K, Morisaki Y, Tanaka K, Chujo Y 2017 Angew. Chem. Int. Ed. 56 254Google Scholar

    [25]

    Zhang Y J, Qile M, Sun J W, Xu M H, Wang K, Cao F, Li W J, Song Q B, Zou B, Zhang C 2016 J. Mater. Chem. C 4 9954Google Scholar

    [26]

    Wang Y N, Wang Y Y, Wei L, Li A S, Fang Y Y, Li L, Li Q, Wang K 2025 Chem. Eng. J. 507 160849Google Scholar

    [27]

    Man Z W, Lv Z, Xu Z Z, Liao Q, Liu J X, Liu Y L, Fu L Y, Liu M H, Bai S M, Fu H B 2020 Adv. Funct. Mater. 30 2000105Google Scholar

    [28]

    Zhao G J, Han K L 2009 J. Phys. Chem. A 113 14329Google Scholar

    [29]

    Xie W T, Li B B, Cai X Y, Li M K, Qiao Z Y, Tang X H, Liu K K, Gu C, Ma Y G, Su S J 2019 Front. Chem. 7 276Google Scholar

    [30]

    Gao F W, Zhong R L, Xu H L, Su Z M 2017 J. Phys. Chem. C 121 25472Google Scholar

    [31]

    Kivala M, Boudon C, Gisselbrecht J P, Enko B, Seiler P, Müller I B, Langer N, Jarowski P D, Gescheidt G, Diederich F 2009 Chem. Eur. J. 15 4111Google Scholar

    [32]

    Bulović V, Shoustikov A, Baldo M A, Bose E, Kozlov V G, Thompson M E, Forrest S R 1998 Chem. Phys. Lett. 287 455Google Scholar

    [33]

    Chen L, Gao Z J, Li Q, Yan C X, Zhang H W, Li Y W, Liu C L 2024 APL Mater. 12 030602Google Scholar

    [34]

    You Z J, Xu B, Meng X M, Wu M, Li A S, Li L, Chen J, Li Q, Wang K 2024 Chem. Eng. J. 493 151597Google Scholar

    [35]

    Mishra M K, Ghalsasi P, Deo M N, Bhatt H, Poswal H K, Ghosh S, Ganguly S 2017 CrystEngComm 19 7083Google Scholar

    [36]

    Guan J W, Daljeet R, Kieran A, Song Y 2018 J. Phys. : Condens. Matter 30 224004Google Scholar

    [37]

    Park T R, Dreger Z A, Gupta Y M 2004 J. Phys. Chem. B 108 3174Google Scholar

  • 图 1  DAC装置及样品腔的结构示意图

    Fig. 1.  Schematic of DAC and the sample cavity.

    图 2  (a) DPA-FO的分子结构示意图及其在白光、紫外光(365 nm)照射下的晶体照片; (b) DPA-FO晶体归一化的荧光发射光谱(绿)和紫外-可见吸收光谱(蓝); (c) DPA-FO在不同溶剂(环己烷CyH、甲苯TOL、乙酸乙酯EtOAc、丙酮Acetone和二甲基甲酰胺DMF)中的归一化荧光发射光谱, 溶剂极性参考Snyder极性指数; (d) DPA-FO荧光发射波长与溶剂极性间的关系(绿色直线为拟合结果)

    Fig. 2.  (a) Chemical structure of DPA-FO molecule and the photo of one typical crystal under visible (Vis) light and 365 nm ultraviolet (UV) irradiation; (b) comparison between the normalized luminescence (green) and UV-Vis absorption (blue) spectra of DPA-FO crystals; (c) normalized emission spectra of DPA-FO in various solvents of cyclohexane (CyH), toluene (TOL), ethyl acetate (EtOAc), acetone (Acetone) and N, N-dimethylformamide (DMF). Solvent polarity is referenced to the Snyder polarity index; (d) linear relationship between emission wavelength and solvent polarity. The green line represents the linear fitting result.

    图 3  (a) DPA-FO的高压荧光光谱; (b) 高压下DPA-FO的荧光显微照片; (c) DPA-FO荧光发射强度(绿)与发射波长(橙)随压力的变化, 橙色直线为发射波长数据的线性拟合, 斜率表示压力系数; 插图表示常压(1 atm)和6.0 GPa的CIE色度图及其坐标变化; (d) DPA-FO在三次压力循环(1 atm—5.0 GPa)过程中的可逆发射波长变化, 插图为相应压力的荧光照片

    Fig. 3.  (a) High-pressure fluorescence spectra of DPA-FO; (b) fluorescence micrographs of DPA-FO at selected pressures; (c) pressure evolution of emission wavelength (orange) and intensity (green). The orange line represents the linear fitting of data for determining the pressure coefficient. Inset illustrates the enlarged view of CIE chromaticity diagram at 1 atm and 6.0 GPa, respectively; (d) reversible changes of emission wavelength during three pressurizing cycling between 1 atm and 5.0 GPa, the illustration is a fluorescence photograph of the corresponding pressure.

    图 4  (a) DMAcr-FO的分子结构示意图和晶体在白光及紫外光(365 nm)照射下的照片; (b) DMAcr-FO的归一化的荧光图谱(粉)和紫外-可见吸收图谱(橙); (c) DMAcr-FO在不同溶剂中的荧光光谱(正己烷HEX、甲苯TOL、四氢呋喃THF、二甲基甲酰胺DMF), 溶剂极性参考Snyder极性指数; (d) DMAcr-FO荧光发射波长随溶剂极性变化的图(粉色直线为拟合结果)

    Fig. 4.  (a) The chemical structure of DMAcr-FO and the photo of DMAcr-FO crystal under the Vis light and UV light (365 nm) irradiation; (b) normalized luminescence (pink) and UV-Vis absorption (orange) spectra of DMAcr-FO crystals; (c) normalized fluorescence spectra of DMAcr-FO in different solvents of n-hexane (HEX), toluene (TOL), tetrahydrofuran (THF), ethyl acetate (DMF). Solvent polarity is referenced to the Snyder polarity index; (d) the emission wavelength of DMAcr-FO with solvent polarity. The pink line represents the linear fitting result.

    图 5  (a) 高压下DMAcr-FO的荧光光谱; (b) DMAcr-FO在选定压力下的荧光显微图片; (c) DMAcr-FO的荧光发射强度(粉)和发射波长(橙)随压力的变化, 其中橙色线条为荧光波长与压力的线性拟合结果, 插图为常压(1 atm)和4.7 GPa的CIE色度图和坐标; (d) DMAcr-FO在三次压力循环(1 atm—5.0 GPa)过程中发射波长的变化图, 插图为相应的荧光显微照片

    Fig. 5.  (a) High-pressure photoluminescence spectra of DMAcr-FO; (b) selected luminescence micrographs at different pressures; (c) pressure dependent intensities (pink) and wavelengths (orange) of DMAcr-FO. The orange line represents linear fittings of the data to achieve pressure coefficients of emission wavelengths. The illustration shows the chromaticity diagram of CIE at 1 atm and 4.7 GPa; (d) reversible changes of emission wavelength during three pressurizing cycling between 1 atm and 5.0 GPa, the illustration is a fluorescence photograph of the corresponding pressure.

    图 6  (a) DPA-FO和(b) DMAcr-FO的高压紫外-可见吸收光谱, 插图为相应压力的晶体显微照片; (c) DPA-FO和DMAcr-FO的吸收边波长随压力的变化, 直线为吸收边波长的线性拟合, 斜率表示压力系数; (d) DPA-FO和DMAcr-FO的斯托克斯位移随压力的变化, 直线为斯托克斯位移数据的线性拟合, 斜率表示压力系数

    Fig. 6.  High-pressure UV-Vis absorption spectra of (a) DPA-FO and (b) DMAcr-FO. The insets illustrate the micrographs of the sample at corresponding pressures; (c) pressure evolution of absorption edges of DPA-FO and DMAcr-FO. The lines represent the linear fitting of data for determining the pressure coefficient; (d) pressure evolution of Stokes shift of DPA-FO and DMAcr-FO.

    图 7  DPA-FO和DMAcr-FO在(a) 1095—1400 cm–1和(b) 1420—1800 cm–1波数范围内的高压红外吸收光谱; (c) DPA-FO和DMAcr-FO的红外振动峰ν(C—N)(上)、ν(C=C)(中)和ν(C=O)(下)峰位随压力的变化, 直线为红外峰位数据的线性拟合, 斜率表示压力系数

    Fig. 7.  High-pressure infrared (IR) spectra of DPA-FO and DMAcr-FO in the frequency ranges of (a) 1095—1400 cm–1 and (b) 1420—1800 cm–1; (c) the wavelengths of selected IR modes of ν(C—N) (up), ν(C=C) (middle) and ν(C=O) (down) at high pressure. The lines represent linear fittings of the data to achieve pressure coefficients of IR modes.

  • [1]

    Li Q Q, Li Z 2020 Acc. Chem. Res. 53 962Google Scholar

    [2]

    Shao B, Jin R H, Li A S, Liu Y J, Li B, Xu S P, Xu W Q, Xu B, Tian W J 2019 J. Mater. Chem. C 7 3263Google Scholar

    [3]

    Jayaraman A, Laboratories B, Hill M, Jersey N 1983 Rev. Mod. Phys. 55 65Google Scholar

    [4]

    郭宏伟, 刘然, 王玲瑞, 崔金星, 宋波, 王凯, 刘冰冰, 邹勃 2017 物理学报 66 030701Google Scholar

    Guo H W, Liu R, Wang L R, Cui J X, Song B, Wang K, Liu B B, Zou B 2017 Acta Phys. Sin. 66 030701Google Scholar

    [5]

    王君龙, 张林基, 刘其军, 陈元正, 沈如, 何竹, 唐斌, 刘秀茹 2017 物理学报 66 166201Google Scholar

    Wang J L, Zhang L J, Liu Q J, Chen Y Z, Shen R, He Z, Tang B, Liu X R 2017 Acta Phys. Sin. 66 166201Google Scholar

    [6]

    Qi Q K, Qian J Y, Tan X, Zhang J B, Wang L J, Xu B, Zou B, Tian W J 2015 Adv. Funct. Mater. 25 4005Google Scholar

    [7]

    Nagura K, Saito S, Yusa H, Yamawaki H, Fujihisa H, Sato H, Shimoikeda Y, Yamaguchi S 2013 J. Am. Chem. Soc. 135 10322Google Scholar

    [8]

    Zhai C G, Yin X, Niu S F, Yao M G, Hu S H, Dong J J, Shang Y C, Wang Z G, Li Q J, Sundqvist B, Liu B B 2021 Nat. Commun. 12 4084Google Scholar

    [9]

    Liu Y J, Zeng Q X, Zou B, Liu Y, Xu B, Tian W J 2018 Angew. Chem. Int. Ed. 57 15670Google Scholar

    [10]

    Sui Q, Yuan Y, Yang N N, Li X, Gong T, Gao E Q, Wang L 2017 J. Mater. Chem. C 5 12400Google Scholar

    [11]

    Chen P Y, Curry M, Meyer T J 1989 Inorg. Chem. 28 2271

    [12]

    Wang E J, Lam J W Y, Hu R R, Zhang C, Zhao Y S, Tang B Z 2014 J. Mater. Chem. C 2 1801Google Scholar

    [13]

    Meng L C, Ma X B, Jiang S, Zhang S, Wu Z Y, Xu B, Lei Z, Liu L J, Tian W J 2020 CCS Chem. 2 2084Google Scholar

    [14]

    Jia H, Sun X N, Meng X M, Wu M, Li A S, Yang M, Wang C Y, Yang J X, Wang K, Li Q, Li L 2024 Mater. Chem. Front. 8 3064Google Scholar

    [15]

    Shen H, Li Y J, Li Y L 2020 Aggregate 1 57Google Scholar

    [16]

    Neha, Kaur N 2024 Coord. Chem. Rev. 521 216173Google Scholar

    [17]

    Kulkarni A P, Kong X X, Jenekhe S A 2006 Macromolecules 39 8699Google Scholar

    [18]

    Panthi K, El-Khoury P Z, Tarnovsky A N, Kinstle T H 2010 Tetrahedron 66 9641Google Scholar

    [19]

    Yang L, Zhu Y Q, Wu J L, Hu B, Pang Z G, Lu Z Y, Zhao S L, Huang Y 2019 Dyes Pigm. 171 107763Google Scholar

    [20]

    Zeng W X, Lai H Y, Lee W K, Jiao M, Shiu Y J, Zhong C, Gong S L, Zhou T, Xie G H, Sarma M, Wong K T, Wu C C, Yang C L 2018 Adv. Mater. 30 1704961Google Scholar

    [21]

    Liu M Y, Li H B, Ma H W, Yao C X, Zhao F G, Han S, Zhang Z Q, Wang N, Yin X D 2025 ACS Appl. Mater. Interfaces 17 21509Google Scholar

    [22]

    Makula P, Pacia M, Macyk W 2018 J. Phys. Chem. Lett. 9 6814Google Scholar

    [23]

    Ceriani C, Corsini F, Mattioli G, Mattiello S, Testa D, Po R, Botta C, Griffini G, Beverina L 2021 J. Mater. Chem. C 9 14815Google Scholar

    [24]

    Naito H, Nishino K, Morisaki Y, Tanaka K, Chujo Y 2017 Angew. Chem. Int. Ed. 56 254Google Scholar

    [25]

    Zhang Y J, Qile M, Sun J W, Xu M H, Wang K, Cao F, Li W J, Song Q B, Zou B, Zhang C 2016 J. Mater. Chem. C 4 9954Google Scholar

    [26]

    Wang Y N, Wang Y Y, Wei L, Li A S, Fang Y Y, Li L, Li Q, Wang K 2025 Chem. Eng. J. 507 160849Google Scholar

    [27]

    Man Z W, Lv Z, Xu Z Z, Liao Q, Liu J X, Liu Y L, Fu L Y, Liu M H, Bai S M, Fu H B 2020 Adv. Funct. Mater. 30 2000105Google Scholar

    [28]

    Zhao G J, Han K L 2009 J. Phys. Chem. A 113 14329Google Scholar

    [29]

    Xie W T, Li B B, Cai X Y, Li M K, Qiao Z Y, Tang X H, Liu K K, Gu C, Ma Y G, Su S J 2019 Front. Chem. 7 276Google Scholar

    [30]

    Gao F W, Zhong R L, Xu H L, Su Z M 2017 J. Phys. Chem. C 121 25472Google Scholar

    [31]

    Kivala M, Boudon C, Gisselbrecht J P, Enko B, Seiler P, Müller I B, Langer N, Jarowski P D, Gescheidt G, Diederich F 2009 Chem. Eur. J. 15 4111Google Scholar

    [32]

    Bulović V, Shoustikov A, Baldo M A, Bose E, Kozlov V G, Thompson M E, Forrest S R 1998 Chem. Phys. Lett. 287 455Google Scholar

    [33]

    Chen L, Gao Z J, Li Q, Yan C X, Zhang H W, Li Y W, Liu C L 2024 APL Mater. 12 030602Google Scholar

    [34]

    You Z J, Xu B, Meng X M, Wu M, Li A S, Li L, Chen J, Li Q, Wang K 2024 Chem. Eng. J. 493 151597Google Scholar

    [35]

    Mishra M K, Ghalsasi P, Deo M N, Bhatt H, Poswal H K, Ghosh S, Ganguly S 2017 CrystEngComm 19 7083Google Scholar

    [36]

    Guan J W, Daljeet R, Kieran A, Song Y 2018 J. Phys. : Condens. Matter 30 224004Google Scholar

    [37]

    Park T R, Dreger Z A, Gupta Y M 2004 J. Phys. Chem. B 108 3174Google Scholar

  • [1] 刘庆彬, 蔚翠, 郭建超, 马孟宇, 何泽召, 周闯杰, 高学栋, 余浩, 冯志红. 多晶金刚石对硅基氮化镓材料的影响. 物理学报, 2023, 72(9): 098104. doi: 10.7498/aps.72.20221942
    [2] 姚盼盼, 王玲瑞, 王家祥, 郭海中. 高压下非铅双钙钛矿Cs2TeCl6的结构和光学性质. 物理学报, 2020, 69(21): 218801. doi: 10.7498/aps.69.20200988
    [3] 陈隆, 陈成克, 李晓, 胡晓君. 氧化对单颗粒层纳米金刚石薄膜硅空位发光和微结构的影响. 物理学报, 2019, 68(16): 168101. doi: 10.7498/aps.68.20190422
    [4] 郭宏伟, 刘然, 王玲瑞, 崔金星, 宋波, 王凯, 刘冰冰, 邹勃. 高压下有机-无机杂化钙钛矿CH3NH3PbI3的结构及光学性质研究. 物理学报, 2017, 66(3): 030701. doi: 10.7498/aps.66.030701
    [5] 丁琨, 武雪飞, 窦秀明, 孙宝权. 电驱动金刚石对顶砧低温连续加压装置. 物理学报, 2016, 65(3): 037701. doi: 10.7498/aps.65.037701
    [6] 张秀芝, 王凯悦, 李志宏, 朱玉梅, 田玉明, 柴跃生. 氮对金刚石缺陷发光的影响. 物理学报, 2015, 64(24): 247802. doi: 10.7498/aps.64.247802
    [7] 王海阔, 贺端威, 许超, 刘方明, 邓佶睿, 何飞, 王永坤, 寇自力. 复合型多晶金刚石末级压砧的制备并标定六面顶压机6-8型压腔压力至35GPa. 物理学报, 2013, 62(18): 180703. doi: 10.7498/aps.62.180703
    [8] 刘燕文, 王小霞, 朱虹, 韩勇, 谷兵, 陆玉新, 方荣. 金刚石材料对螺旋线慢波组件散热性能的影响. 物理学报, 2013, 62(23): 234402. doi: 10.7498/aps.62.234402
    [9] 田玉明, 王凯悦, 李志宏, 朱玉梅, 柴跃生, 曾雨顺, 王强. 高能电子照射对金刚石中缺陷电荷状态的影响. 物理学报, 2013, 62(18): 188101. doi: 10.7498/aps.62.188101
    [10] 王凯悦, 李志宏, 张博, 朱玉梅. 光致发光光谱研究金刚石光学中心的振动结构. 物理学报, 2012, 61(12): 127804. doi: 10.7498/aps.61.127804
    [11] 王静, 刘贵昌, 李红玲, 侯保荣. 铜基类金刚石膜功能梯度材料作为散热材料的研究. 物理学报, 2012, 61(5): 058102. doi: 10.7498/aps.61.058102
    [12] 王凯悦, 李志宏, 高凯, 朱玉梅. 电子辐照金刚石的光致发光研究. 物理学报, 2012, 61(9): 097803. doi: 10.7498/aps.61.097803
    [13] 吴宝嘉, 韩永昊, 彭刚, 金逢锡, 顾广瑞, 高春晓. 金刚石对顶砧中触点位置误差对样品电阻率测量精度的影响(已撤稿). 物理学报, 2011, 60(12): 127203. doi: 10.7498/aps.60.127203
    [14] 吴宝嘉, 韩永昊, 彭刚, 刘才龙, 王月, 高春晓. 原位高压微米氧化锌电学性质的研究. 物理学报, 2010, 59(6): 4235-4239. doi: 10.7498/aps.59.4235
    [15] 开花, 李运超, 郭德成, 李双, 李之杰. 斜入射离子束辅助沉积对类金刚石薄膜结构影响的分子动力学模拟. 物理学报, 2009, 58(7): 4888-4894. doi: 10.7498/aps.58.4888
    [16] 王江华, 贺端威. 金刚石压砧内单轴应力场对物质状态方程测量的影响. 物理学报, 2008, 57(6): 3397-3401. doi: 10.7498/aps.57.3397
    [17] 徐 靖, 王治国, 陈宇光, 石云龙, 陈 鸿. 电荷转移型Hubbard模型的相图. 物理学报, 2005, 54(1): 307-312. doi: 10.7498/aps.54.307
    [18] 苗润才, 傅克德, 李向, 刘西社, 张长安. 金属银表面-分子体系中电荷转移效应的形成过程. 物理学报, 1991, 40(3): 454-458. doi: 10.7498/aps.40.454
    [19] 苗润才, 潘多海, 张鹏翔, 李秀英. 金属银表面-分子体系中的电荷转移效应. 物理学报, 1988, 37(11): 1870-1875. doi: 10.7498/aps.37.1870
    [20] 胡静竹, 唐汝明, 徐济安. 金刚石压砧高压装置及I2和S高压相变的观察. 物理学报, 1980, 29(10): 1351-1354. doi: 10.7498/aps.29.1351
计量
  • 文章访问数:  862
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-15
  • 修回日期:  2025-07-03
  • 上网日期:  2025-07-25
  • 刊出日期:  2025-09-05

/

返回文章
返回