搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子注入诱导成核外延高质量AlN

余森 许晟瑞 陶鸿昌 王海涛 安瑕 杨赫 许钪 张进成 郝跃

引用本文:
Citation:

离子注入诱导成核外延高质量AlN

余森, 许晟瑞, 陶鸿昌, 王海涛, 安瑕, 杨赫, 许钪, 张进成, 郝跃

Ion implantation induced nucleation and epitaxial growth of high-quality AlN

Yu Sen, Xu Sheng-Rui, Tao Hong-Chang, Wang Hai-Tao, An Xia, Yang He, Xu Kang, Zhang Jin-Cheng, Hao Yue
PDF
HTML
导出引用
  • 超宽禁带AlN材料具有禁带宽度大、击穿电场高、热导率高、直接带隙等优势, 被广泛应用于光电子器件和电力电子器件等领域. AlN材料的质量影响着AlN基器件的性能, 为此研究人员提出了多种方法来提高异质外延AlN晶体的质量, 但是这些方法工艺复杂且成本高昂. 因此, 本文提出了诱导成核的新方法来获得高质量的AlN材料. 首先, 对纳米图案化的蓝宝石衬底注入不同剂量的N离子进行预处理, 随后基于该衬底用金属有机化学气相沉积法外延AlN基板, 并在其上生长多量子阱结构, 最后基于此多量子阱结构制备紫外发光二极管. 研究结果表明, 在注入N离子剂量为1×1013 cm–2的衬底上外延获得的AlN基板, 其表面粗糙度最小且位错密度最低. 由此可见, 适当剂量的N离子注入促进了AlN异质外延过程中的横向生长与合并过程; 这可能是因为N离子的注入, 抑制了初期成核过程中形成的扭曲的镶嵌结构, 有效地降低了AlN的螺位错以及刃位错密度. 此外, 基于该基板制备的多量子阱结构, 其残余应力最小, 光致发光强度提高到无注入样品的152% . 此外, 紫外发光二极管的光电性能大幅提高, 当注入电流为100 mA时, 光输出功率和电光转换效率分别提高了63.8%和61.7%.
    AlN materials have a wide range of applications in the fields of optoelectronic, power electronic, and radio frequency. However, the significant lattice mismatch and thermal mismatch between heteroepitaxial AlN and its substrate lead to a high threading dislocation (TD) density, thereby degrading the performance of device. In this work, we introduce a novel, cost-effective, and stable approach to epitaxially growing AlN. We inject different doses of nitrogen ions into nano patterned sapphire substrates, and then deposit the AlN layers by using metal-organic chemical vapor deposition. Ultraviolet light-emitting diode (UV-LED) with a luminescence wavelength of 395 nm is fabricated on it, and the optoelectronic properties are evaluated. Compared with the sample prepared by the traditional method, the sample injected with N ions at a dose of 1×1013 cm–2 exhibits an 82% reduction in screw TD density, the lowest surface roughness, and a 52% increase in photoluminescence intensity. It can be seen that appropriate dose of N ion implantation can promote the lateral growth and merging process in AlN heteroepitaxy. This is due to the fact that the process of implantation of N ions can suppress the tilt and twist of the nucleation islands, effectively reducing the density of TDs in AlN. Furthermore, in comparison with the controlled LED, the LED prepared on the high quality AlN template increases 63.8% and 61.7% in light output power and wall plug efficiency, respectively. The observed enhancement in device performance is attributed to the TD density of the epitaxial layer decreasing, which effectively reduces the nonradiative recombination centers. In summary, this study indicates that the ion implantation can significantly improve the quality of epitaxial AlN, thereby facilitating the development of high-performance AlN-based UV-LEDs.
      通信作者: 许晟瑞, srxu@xidian.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFB3604400)和国家自然科学基金(批准号: 62074120, 62134006)资助的课题.
      Corresponding author: Xu Sheng-Rui, srxu@xidian.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB3604400) and the National Natural Science Foundation of China (Grant Nos. 62074120, 62134006).
    [1]

    徐爽, 许晟瑞, 王心颢, 卢灏, 刘旭, 贠博祥, 张雅超, 张涛, 张进成, 郝跃 2023 物理学报 72 196101Google Scholar

    Xu S, Xu S R, Wang X H, Lu H, Liu X, Yun B X, Zhang Y C, Zhang T, Zhang J C, Hao Y 2023 Acta Phys. Sin. 72 196101Google Scholar

    [2]

    武鹏, 张涛, 张进成, 郝跃 2022 物理学报 71 158503Google Scholar

    Wu P, Zhang T, Zhang J C, Hao Y 2022 Acta Phys. Sin. 71 158503Google Scholar

    [3]

    郭海君, 段宝兴, 袁嵩, 谢慎隆, 杨银堂 2017 物理学报 66 167301Google Scholar

    Guo H J, Duan B X, Yuan S, Xie S L, Yang Y T 2017 Acta Phys. Sin. 66 167301Google Scholar

    [4]

    Niass M I, Wang F, Liu Y H 2022 Chin. J. Electron. 31 683Google Scholar

    [5]

    Taniyasu Y, Kasu M, Makimoto T 2006 Nature 441 325Google Scholar

    [6]

    Yu R X, Liu G X, Wang G D, Chen C M, Xu M S, Zhou H, Wang T L, Yu J X, Zhao G, Zhang L 2021 J. Mater. Chem. C 9 1852Google Scholar

    [7]

    Fu H Q, Baranowski I, Huang X Q, Chen H, Lu Z J, Montes J, Zhang X D, Zhao Y J 2017 IEEE Electron Device Lett. 38 1286Google Scholar

    [8]

    Cheng Z, Koh Y R, Mamun A, Shi J, Bai T, Huynh K, Yates L, Liu Z, Li R, Lee E 2020 Phys. Rev. Mater. 4 044602Google Scholar

    [9]

    Amano H, Collazo R, Santi D C, Einfeldt S, Funato M, Glaab J, Hagedorn S, Hirano A, Hirayama H, Ishii R 2020 J. Phys. D: Appl. Phys. 53 503001Google Scholar

    [10]

    Fei C L, Liu X L, Zhu B P, Li D, Yang X F, Yang Y T, Zhou Q F 2018 Nano Energy 51 146Google Scholar

    [11]

    Ni X F, Fan Q, Hua B, Sun P H, Cai Z Z, Wang H C, Huang C N, Gu X 2020 IEEE Trans. Electron Devices 67 3988Google Scholar

    [12]

    Chu Y W, Kharel P, Yoon T, Yoon T, Frunzio L, Rakich P T, Schoelkopf R J 2018 Nature 563 666Google Scholar

    [13]

    Kneissl M, Seong T Y, Han J, Amano H 2019 Nat. Photonics 13 233Google Scholar

    [14]

    Wu H L, Wu W C, Zhang H X, Chen Y D, Wu Z S, Wang G, Jiang H 2016 Appl. Phys. Express 9 052103Google Scholar

    [15]

    Mackey T K, Contreras J T, Liang B A 2014 Sci. Total Environ. 472 125Google Scholar

    [16]

    Look D C, Hemsky J W, Sizelove J R 1999 Phys. Rev. Lett. 82 2552Google Scholar

    [17]

    Peng R S, Xu S R, Fan X M, Tao H C, Su H K, Gao Y, Zhang J C, Hao Y 2023 J. Semicond. 44 042801Google Scholar

    [18]

    Jena D, Gossard A C, Mishra U K 2000 Appl. Phys. Lett. 76 1707Google Scholar

    [19]

    Brazel E G, Chin M A, Narayanamurti V 1999 Appl. Phys. Lett. 74 2367Google Scholar

    [20]

    Wu H L, Zhang K, He C G, He L F, Wang Q, Zhao W, Chen Z T 2022 Crystals 12 38Google Scholar

    [21]

    Tao H C, Xu S R, Zhang J C, Su H K, Gao Y, Zhang Y C, Zhou H, Hao Y 2023 Opt. Express 31 20850Google Scholar

    [22]

    Tao H C, Xu S R, Su H K, et al. 2023 Mater. Lett. 351 135097Google Scholar

    [23]

    Wang J M, Xie N, Xu F J, et al. 2023 Nat. Mater. 22 853Google Scholar

    [24]

    Ban K, Yamamoto J, Takeda K, Ide K, Iwaya M, Takeuchi T, Kamiyama S, Akasaki I, Amano H 2011 Appl. Phys. Express 4 052101Google Scholar

    [25]

    Hushur A, Manghnani M H, Narayan J 2009 J. Appl. Phys. 106 54317Google Scholar

    [26]

    Kozawa T, Kachi T, Kano H, Nagase H, Koide N, Manabe K 1995 J. Appl. Phys. 77 4389Google Scholar

  • 图 1  UV-LED结构示意图

    Fig. 1.  Schematic diagram of UV-LED.

    图 2  四个AlN基板的AFM测试图 (a) 样品S1; (b) 样品S2; (c) 样品S3; (d) 样品S4

    Fig. 2.  AFM images of four AlN buffers: (a) Sample S1; (b) sample S2; (c) sample S3; (d) sample S4.

    图 3  四个AlN基板的SEM测试图 (a) 样品S1; (b) 样品S2; (c) 样品S3; (d) 样品S4

    Fig. 3.  SEM images of four AlN buffers: (a) Sample S1; (b) sample S2; (c) sample S3; (d) sample S4.

    图 4  样品S1—S4的XRD摇摆曲线图 (a) (002)面; (b) (102)面

    Fig. 4.  XRD rocking curves of samples S1–S4: (a) (002)-RC; (b) (102)-RC.

    图 5  四个样品的室温下Raman图

    Fig. 5.  Raman images of four samples at room temperature.

    图 6  四个样品的室温下PL图

    Fig. 6.  PL images of four samples at room temperature.

    图 7  实验组LED和对照组LED的光电特性测试结果(a) I-V特性曲线; (b) LOP随注入电流的变化曲线; (c) 电光转换效率随注入电流的变化曲线

    Fig. 7.  Photoelectric performance of control device and treatment device: (a) I-V characteristic; (b) light output power versus injection current; (c) wall-plug efficiency curve versus injection current.

  • [1]

    徐爽, 许晟瑞, 王心颢, 卢灏, 刘旭, 贠博祥, 张雅超, 张涛, 张进成, 郝跃 2023 物理学报 72 196101Google Scholar

    Xu S, Xu S R, Wang X H, Lu H, Liu X, Yun B X, Zhang Y C, Zhang T, Zhang J C, Hao Y 2023 Acta Phys. Sin. 72 196101Google Scholar

    [2]

    武鹏, 张涛, 张进成, 郝跃 2022 物理学报 71 158503Google Scholar

    Wu P, Zhang T, Zhang J C, Hao Y 2022 Acta Phys. Sin. 71 158503Google Scholar

    [3]

    郭海君, 段宝兴, 袁嵩, 谢慎隆, 杨银堂 2017 物理学报 66 167301Google Scholar

    Guo H J, Duan B X, Yuan S, Xie S L, Yang Y T 2017 Acta Phys. Sin. 66 167301Google Scholar

    [4]

    Niass M I, Wang F, Liu Y H 2022 Chin. J. Electron. 31 683Google Scholar

    [5]

    Taniyasu Y, Kasu M, Makimoto T 2006 Nature 441 325Google Scholar

    [6]

    Yu R X, Liu G X, Wang G D, Chen C M, Xu M S, Zhou H, Wang T L, Yu J X, Zhao G, Zhang L 2021 J. Mater. Chem. C 9 1852Google Scholar

    [7]

    Fu H Q, Baranowski I, Huang X Q, Chen H, Lu Z J, Montes J, Zhang X D, Zhao Y J 2017 IEEE Electron Device Lett. 38 1286Google Scholar

    [8]

    Cheng Z, Koh Y R, Mamun A, Shi J, Bai T, Huynh K, Yates L, Liu Z, Li R, Lee E 2020 Phys. Rev. Mater. 4 044602Google Scholar

    [9]

    Amano H, Collazo R, Santi D C, Einfeldt S, Funato M, Glaab J, Hagedorn S, Hirano A, Hirayama H, Ishii R 2020 J. Phys. D: Appl. Phys. 53 503001Google Scholar

    [10]

    Fei C L, Liu X L, Zhu B P, Li D, Yang X F, Yang Y T, Zhou Q F 2018 Nano Energy 51 146Google Scholar

    [11]

    Ni X F, Fan Q, Hua B, Sun P H, Cai Z Z, Wang H C, Huang C N, Gu X 2020 IEEE Trans. Electron Devices 67 3988Google Scholar

    [12]

    Chu Y W, Kharel P, Yoon T, Yoon T, Frunzio L, Rakich P T, Schoelkopf R J 2018 Nature 563 666Google Scholar

    [13]

    Kneissl M, Seong T Y, Han J, Amano H 2019 Nat. Photonics 13 233Google Scholar

    [14]

    Wu H L, Wu W C, Zhang H X, Chen Y D, Wu Z S, Wang G, Jiang H 2016 Appl. Phys. Express 9 052103Google Scholar

    [15]

    Mackey T K, Contreras J T, Liang B A 2014 Sci. Total Environ. 472 125Google Scholar

    [16]

    Look D C, Hemsky J W, Sizelove J R 1999 Phys. Rev. Lett. 82 2552Google Scholar

    [17]

    Peng R S, Xu S R, Fan X M, Tao H C, Su H K, Gao Y, Zhang J C, Hao Y 2023 J. Semicond. 44 042801Google Scholar

    [18]

    Jena D, Gossard A C, Mishra U K 2000 Appl. Phys. Lett. 76 1707Google Scholar

    [19]

    Brazel E G, Chin M A, Narayanamurti V 1999 Appl. Phys. Lett. 74 2367Google Scholar

    [20]

    Wu H L, Zhang K, He C G, He L F, Wang Q, Zhao W, Chen Z T 2022 Crystals 12 38Google Scholar

    [21]

    Tao H C, Xu S R, Zhang J C, Su H K, Gao Y, Zhang Y C, Zhou H, Hao Y 2023 Opt. Express 31 20850Google Scholar

    [22]

    Tao H C, Xu S R, Su H K, et al. 2023 Mater. Lett. 351 135097Google Scholar

    [23]

    Wang J M, Xie N, Xu F J, et al. 2023 Nat. Mater. 22 853Google Scholar

    [24]

    Ban K, Yamamoto J, Takeda K, Ide K, Iwaya M, Takeuchi T, Kamiyama S, Akasaki I, Amano H 2011 Appl. Phys. Express 4 052101Google Scholar

    [25]

    Hushur A, Manghnani M H, Narayan J 2009 J. Appl. Phys. 106 54317Google Scholar

    [26]

    Kozawa T, Kachi T, Kano H, Nagase H, Koide N, Manabe K 1995 J. Appl. Phys. 77 4389Google Scholar

  • [1] 赵建铖, 吴朝兴, 郭太良. 无注入型发光二极管的载流子输运模型研究. 物理学报, 2023, 72(4): 048503. doi: 10.7498/aps.72.20221831
    [2] 李雪, 曹宝龙, 王明昊, 冯增勤, 陈淑芬. 基于改性空穴注入层与复合发光层的高效钙钛矿发光二极管. 物理学报, 2021, 70(4): 048502. doi: 10.7498/aps.70.20201379
    [3] 吴家龙, 窦永江, 张建凤, 王浩然, 杨绪勇. 溶液法制备的金属掺杂氧化镍空穴注入层在钙钛矿发光二极管上的应用. 物理学报, 2020, 69(1): 018101. doi: 10.7498/aps.69.20191269
    [4] 黎振超, 陈梓铭, 邹广锐兴, 叶轩立, 曹镛. 有机添加剂在金属卤化钙钛矿发光二极管中的应用. 物理学报, 2019, 68(15): 158505. doi: 10.7498/aps.68.20190307
    [5] 黄伟, 李跃龙, 任慧志, 王鹏阳, 魏长春, 侯国付, 张德坤, 许盛之, 王广才, 赵颖, 袁明鉴, 张晓丹. 基于N型纳米晶硅氧电子注入层的钙钛矿发光二极管. 物理学报, 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [6] 封波, 邓彪, 刘乐功, 李增成, 冯美鑫, 赵汉民, 孙钱. 等离子体表面处理对硅衬底GaN基蓝光发光二极管内置n型欧姆接触的影响. 物理学报, 2017, 66(4): 047801. doi: 10.7498/aps.66.047801
    [7] 贾博仑, 邓玲玲, 陈若曦, 张雅男, 房旭民. 利用Ag@SiO2纳米粒子等离子体共振增强发光二极管辐射功率的数值研究. 物理学报, 2017, 66(23): 237801. doi: 10.7498/aps.66.237801
    [8] 王光绪, 陈鹏, 刘军林, 吴小明, 莫春兰, 全知觉, 江风益. 刻蚀AlN缓冲层对硅衬底N极性n-GaN表面粗化的影响. 物理学报, 2016, 65(8): 088501. doi: 10.7498/aps.65.088501
    [9] 冯嘉恒, 唐立丹, 刘邦武, 夏洋, 王冰. 等离子增强原子层沉积低温生长AlN薄膜. 物理学报, 2013, 62(11): 117302. doi: 10.7498/aps.62.117302
    [10] 王健, 谢自力, 张荣, 张韵, 刘斌, 陈鹏, 韩平. InN的光致发光特性研究. 物理学报, 2013, 62(11): 117802. doi: 10.7498/aps.62.117802
    [11] 岳庆炀, 孔凡敏, 李康, 赵佳. 基于缺陷光子晶体结构的GaN基发光二极管光提取效率的有关研究. 物理学报, 2012, 61(20): 208502. doi: 10.7498/aps.61.208502
    [12] 高晖, 孔凡敏, 李康, 陈新莲, 丁庆安, 孙静. 双层光子晶体氮化镓蓝光发光二极管结构优化的研究. 物理学报, 2012, 61(12): 127807. doi: 10.7498/aps.61.127807
    [13] 李天晶, 李公平, 马俊平, 高行新. 钴离子注入对二氧化钛晶体的结构和光学性能的影响. 物理学报, 2011, 60(11): 116102. doi: 10.7498/aps.60.116102
    [14] 李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁. 氮化镓基发光二极管结构中粗化 p型氮化镓层的新型生长方法. 物理学报, 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [15] 张大成, 申艳艳, 黄元杰, 王卓, 刘昌龙. 绝缘体中金属离子注入合成纳米颗粒的理论研究. 物理学报, 2010, 59(11): 7974-7978. doi: 10.7498/aps.59.7974
    [16] 杨义涛, 张崇宏, 周丽宏, 李炳生, 张丽卿. 惰性气体离子注入铝镁尖晶石合成金属纳米颗粒的探索. 物理学报, 2009, 58(1): 399-403. doi: 10.7498/aps.58.399
    [17] 张小东, 林德旭, 李公平, 尤 伟, 张利民, 张 宇, 刘正民. 离子注入n型GaN光致发光谱中宽黄光发射带研究. 物理学报, 2006, 55(10): 5487-5493. doi: 10.7498/aps.55.5487
    [18] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究. 物理学报, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
    [19] 刘雪芹, 王印月, 甄聪棉, 张静, 杨映虎, 郭永平. 离子注入和固相外延制备Si1-x-yGexCy半导体薄膜. 物理学报, 2002, 51(10): 2340-2343. doi: 10.7498/aps.51.2340
    [20] 涂鲜花, 李道火. 离子注入对纳米氮化硅量子点蓝光增强效应. 物理学报, 2000, 49(7): 1383-1385. doi: 10.7498/aps.49.1383
计量
  • 文章访问数:  681
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-11
  • 修回日期:  2024-08-31
  • 上网日期:  2024-09-04
  • 刊出日期:  2024-10-05

/

返回文章
返回