搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压电圆环径向弯曲振动与激励研究

潘瑞 莫喜平 柴勇 张秀侦 田芝凤

引用本文:
Citation:

压电圆环径向弯曲振动与激励研究

潘瑞, 莫喜平, 柴勇, 张秀侦, 田芝凤

Study of radial bending vibration and excitation of piezoelectric rings

Pan Rui, Mo Xi-ping, Chai yong, Zhang Xiu-zheng, Tian Zhi-feng
PDF
导出引用
  • 针对压电圆环换能器的径向弯曲振动问题,从薄壳理论出发进行了相关数理推导,讨论了压电效应的影响及电学短路与开路下的弯曲振动方程。进行相关解析求解,给出了两种条件下的多阶谐振频率预测公式,并利用有限元法分析了两式的适用范围。使用模态理论,定义模态权值函数,研究了电学激励条件对多阶弯曲振动模态的具体影响,得到了单模态激励、局部等幅激励和单端激励等作用于多个目标模态的有效方法。经有限元仿真(FEM)、实验与理论对比验证,三者吻合较好,相关结论可以为压电圆环弯曲振动模态识别、模态激励的精细化调控提供理论基础。
    Piezoelectric ring transducer is one of the most common underwater transducers, its radial vibration, bending vibration in-plane r-θ and out-of-plane r-θ have been widely studied. However, the current research on the bending vibration in-plane r-z of the ring is insufficient, although it may have a noticeable impact on the applicability of the underwater transducers. In this study, mechanical analysis and related mathematical calculations of the bending vibrations in-plane r-z have been carried out from the thin-shell theory. The work consists of three aspects: (1) free vibration theory solution, (2) forced vibration: multi-order modal excitation theory, and (3) related finite element calculations and experimental verification. In the study, the bending vibration equations under electrical short and open are derived, and the multi-order resonance frequency prediction formulas and shape functions for both conditions are obtained by analytical solution and function fitting. Using the finite element method, the influence of piezoelectric effect and the range of applicability of these two electrical conditions are analyzed. In the paper, the non-homogeneous equations under forced vibration are solved. Benefits from the orthogonal completeness property of the vibration mode function, an integral transform with the vibration mode function as the basis vector can be defined, so that the equation is solved in a simple positive space, and the results reveal the relationship between the coefficients of the modes of different orders and the voltage distribution. By modal theory, the effects of electrical excitation conditions on the multistep bending vibration modes are investigated, and effective methods such as unimodal excitation, partial excitation and single-ended excitation acting on several different target modes are obtained. The proposed piezoelectric ring unimodal excitation and single-ended excitation methods successfully excited the target modes in the experiments: the unimodal excited ring excites only one of its corresponding bending modes, while the single-ended excitation method excites all the bending modes of the first five orders, and its modal strength characteristics are in accordance with the theoretical predictions. The paper involves finite element simulation (FEM), experimental and theoretical comparative verification, which are in good agreement. The relevant conclusions can provide a theoretical basis for the identification of vibration modes of piezoelectric ring and the fine tuning of modal excitation.
  • [1]

    Butler J L, Sherman C H 2016 Transducers and Arrays for Underwater Sound (Cham: Springer International Publishing) p191

    [2]

    TENG D, WANG Y, XIE K K 2018 J. Shaanxi Norm. Uni. (Nat. Sci. Ed.) 46 30 (in Chinese) [滕舵, 王龑, 解柯柯 2018 陕西师范大学学报(自然科学版) 46 30]

    [3]

    Zhou L S, Xu X R 2021 Acta Acust. 46 1250 (in Chinese) [周利生, 许欣然 2021 声学学报 46 1250]

    [4]

    Zhang H L 2018 M. Eng. Dissertation (Harbin Engineering University) (in Chinese) [张鸿磊 2018 硕士学位论文 (哈尔滨工程大学)]

    [5]

    Chai Y, Mo X P, Liu Y P, Pan Y Z, Zhang Y Q 2017 Acta Acust. 42 619 (in Chinese) [柴勇, 莫喜平, 刘永平, 潘耀宗, 张运强, 李鹏 2017 声学学报 42 619]

    [6]

    Song Z, Yan Y R 2018 J. Unmanned Underw. Systems 26 498 (in Chinese) 宋哲, 严由嵘 2018 水下无人系统学报 26 498

    [7]

    Lin S Y 2023 Acta Acust. 28 102 (in Chinese) [林书玉 2003 声学学报 28 102]

    [8]

    Mu Y R 1979 Acta Acust. 3 161 (in Chinese) [穆廷荣 1979 声学学报 3 161]

    [9]

    Been K, Nam S, Lee H, Seo H seon, Moon W 2017 J. Acoust. Soc. Am. 141 4740

    [10]

    Lee J, Been K, Moon W 2023 J. Acoust. Soc. Am. 154 A228

    [11]

    Rogers P H 2005 J. Acoust. Soc. Am. 77 S16

    [12]

    Butler J L 1976 J. Acoust. Soc. Am. 59 480

    [13]

    Sherman C H, Parke N G 2005 J. Acoust. Soc. Am. 38 715

    [14]

    Chi-Hung Huang, Chien-Ching Ma, Yu-Chih Lin 2005 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 52 1204

    [15]

    Aronov B S 2013 J. Acoust. Soc. Am. 134 1021

    [16]

    Hu J L 2023 Ph. D. Dissertation (Harbin Engineering University) (in Chinese) [胡久龄 2023 博士学位论文 (哈尔滨工程大学)]

    [17]

    Teng D 2016 Fundamentals of hydroacoustic transducers (Northwestern Polytechnical University Press) p233 (in Chinese) [滕舵 2016 水声换能器基础 第233页]

    [18]

    Timošenko S P, Woinowsky-Krieger S 1996 Theory of plates and shells (New York: McGraw-Hill) p580

    [19]

    Cao Z Y 1989 Plate and Shell Vibration Theory (Beijing: China Railway Press) p462 (in Chinese) [曹志远 1989 板壳振动理论 (中国铁道出版社) 第462页]

    [20]

    Luan G D 2005 Piezoelectric transducers and transducer arrays (Peking University Press) p479 (in Chinese) [栾桂冬 2005 压电换能器和换能器阵 (北京大学出版社) 第479页]

    [21]

    Pan R, Chai Y, Mo X P, Liu W Z, Zhang X Z 2024 Appl. Acoust. 43 719 (in Chinese) [潘瑞, 柴勇, 莫喜平, 刘文钊, 张秀侦 2024 应用声学 43 719]

    [22]

    Zhang H L 2012 Theoretical Acoustics (Beijing: Higher Education Press) p139 (in Chinese) [张海澜 2012 理论声学(北京:高等教育出版社) 第139页

    [23]

    Dan Y, Xu L, Zhou G P 2022 Piezoelectr. Acoustoopt. 44 316 (in Chinese) [单影, 许龙, 周光平 2022 压电与声光 44 316]

  • [1] 张羿双, 桑永杰, 陈永耀, 吴帅. Janus-Helmholtz换能器的振动模态谐振频率理论分析研究. 物理学报, doi: 10.7498/aps.73.20231251
    [2] 刘洋, 陈诚, 林书玉. 基于声黑洞设计理论的径向夹心式径-弯复合换能器. 物理学报, doi: 10.7498/aps.73.20231983
    [3] 于天林, 凡凤仙. 竖直振动激励下颗粒毛细上升行为研究. 物理学报, doi: 10.7498/aps.71.20212333
    [4] 叶欣, 单彦广. 疏水表面振动液滴模态演化与流场结构的数值模拟. 物理学报, doi: 10.7498/aps.70.20210161
    [5] 陈诚, 林书玉. 基于2-2型压电复合材料的新型宽频带径向振动超声换能器. 物理学报, doi: 10.7498/aps.70.20201352
    [6] 杜春阳, 郁殿龙, 刘江伟, 温激鸿. X形超阻尼局域共振声子晶体梁弯曲振动带隙特性. 物理学报, doi: 10.7498/aps.66.140701
    [7] 代显智, 刘小亚, 陈蕾. 一种采用双换能器和摆式结构的宽频振动能量采集器. 物理学报, doi: 10.7498/aps.65.130701
    [8] 张小丽, 林书玉, 付志强, 王勇. 弯曲振动薄圆盘的共振频率和等效电路参数研究. 物理学报, doi: 10.7498/aps.62.034301
    [9] 文岐华, 左曙光, 魏欢. 多振子梁弯曲振动中的局域共振带隙. 物理学报, doi: 10.7498/aps.61.034301
    [10] 史良马, 刘连忠, 王向贤, 朱仁义. 介观薄圆环中的间隙性超导. 物理学报, doi: 10.7498/aps.61.157401
    [11] 马焕培, 贺西平, 兰正康, 阿卜力孜·阿卜来提. 弯曲振动矩形板辐射阻抗的计算. 物理学报, doi: 10.7498/aps.61.194302
    [12] 代显智, 文玉梅, 李平, 杨进, 江小芳. 采用磁电换能器的振动能量采集器. 物理学报, doi: 10.7498/aps.59.2137
    [13] 贺西平. 弯曲振动阶梯圆盘辐射阻抗的计算方法. 物理学报, doi: 10.7498/aps.59.3290
    [14] 潘晓娟, 贺西平. 厚圆盘弯曲振动研究. 物理学报, doi: 10.7498/aps.59.7911
    [15] 沈惠杰, 温激鸿, 郁殿龙, 温熙森. 基于Timoshenko梁模型的周期充液管路弯曲振动带隙特性和传输特性. 物理学报, doi: 10.7498/aps.58.8357
    [16] 刘延柱. 黏性介质中圆截面弹性细杆的平面振动. 物理学报, doi: 10.7498/aps.54.4989
    [17] 姚凯伦, 李占杰, 邢彪. 聚乙炔孤子的二维局域振动模及其键弯曲势的影响. 物理学报, doi: 10.7498/aps.41.87
    [18] 超声处理组. 宽频带夹芯式压电换能器. 物理学报, doi: 10.7498/aps.25.85
    [19] 林鸿荪. 任意横向载荷下弹性圆形及圆环形薄板的弯曲. 物理学报, doi: 10.7498/aps.12.360
    [20] 胡海昌. 球面扁薄圆壳的跳跃问题. 物理学报, doi: 10.7498/aps.10.105
计量
  • 文章访问数:  108
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2024-09-04

/

返回文章
返回