搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压电圆环径向弯曲振动与激励研究

潘瑞 莫喜平 柴勇 张秀侦 田芝凤

引用本文:
Citation:

压电圆环径向弯曲振动与激励研究

潘瑞, 莫喜平, 柴勇, 张秀侦, 田芝凤
cstr: 32037.14.aps.73.20240887

Study of radial bending vibration and excitation of piezoelectric rings

Pan Rui, Mo Xi-Ping, Chai Yong, Zhang Xiu-Zhen, Tian Zhi-Feng
cstr: 32037.14.aps.73.20240887
PDF
HTML
导出引用
  • 针对压电圆环换能器的径向弯曲振动问题, 从薄壳理论出发进行相关数理推导, 讨论了压电效应的影响及电学短路与开路下的弯曲振动方程. 进行相关解析求解, 给出了两种条件下的多阶谐振频率预测公式, 并利用有限元法分析了两式的适用范围. 使用模态理论, 定义模态权值函数, 研究了电学激励条件对多阶弯曲振动模态的具体影响, 得到了单模态激励、局部等幅激励和单端激励等作用于多个目标模态的有效方法. 经有限元仿真(FEM)、实验与理论对比验证, 三者吻合较好, 相关结论可以为压电圆环弯曲振动模态识别、模态激励的精细化调控提供理论基础.
    Piezoelectric ring transducer is one of the most common underwater transducers, and its radial vibration, bending vibration in-plane $r \text- \theta $ and out-of-plane $r \text- \theta $ have been widely studied. However, the current research on the bending vibration in the plane $r \text- z$ of the ring is insufficient, although it may have a noticeable influence on the applicability of the underwater transducers. In this study, mechanical analysis and related mathematical calculations of the bending vibrations in the plane $r \text- z$ are carried out by using the thin-shell theory. Herein, the following three aspects are studied: 1) free vibration theory solution, 2) forced vibration: multi-order modal excitation theory, and 3) related finite element calculations and experimental verification. In this study, the bending vibration equations under electrical short and electric open condition are derived, and the multi-order resonance frequency prediction formulas and shape functions for both conditions are obtained by analytical solution and function fitting. Using the finite element method, the influence of piezoelectric effect and the range of applicability of these two electrical conditions are analyzed. The non-homogeneous equations under forced vibration are solved. By utilizing the orthogonal completeness of the vibration mode function, an integral transformation with the vibration mode function can be defined as the basis vector, so that the equation is solved in a simple positive space, and the results reveal the relationship between the coefficients of the modes of different orders and the voltage distribution. By modal theory, the effects of electrical excitation conditions on the multistep bending vibration modes are investigated, and effective methods such as unimodal excitation, partial excitation and single-ended excitation acting on several different target modes are obtained. The proposed piezoelectric ring unimodal excitation and single-ended excitation methods successfully excite the target modes in the experiments: the unimodal excited ring excites only one of its corresponding bending modes, while the single-ended excitation method excites all the bending modes of the first five orders, and its modal strength characteristics are in accordance with the theoretical predictions. This study involves finite element simulation, experimental and theoretical comparative verification, which are in good agreement. The relevant conclusions can provide a theoretical basis for identifying the vibration modes of piezoelectric ring and the fine tuning of modal excitation.
      通信作者: 莫喜平, moxp@mail.ioa.ac.cn ; 柴勇, chaiyong@mail.ioa.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 62127801)资助的课题.
      Corresponding author: Mo Xi-Ping, moxp@mail.ioa.ac.cn ; Chai Yong, chaiyong@mail.ioa.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62127801).
    [1]

    Butler J L, Sherman C H 2016 Transducers and Arrays for Underwater Sound (Cham: Springer International Publishing) p191

    [2]

    滕舵, 王龑, 解柯柯 2018 陕西师范大学学报(自然科学版) 46 30Google Scholar

    Teng D, Wang Y, Xie K K 2018 J. Shaanxi Norm. Uni. (Nat. Sci. Ed. ) 46 30Google Scholar

    [3]

    周利生, 许欣然 2021 声学学报 46 1250Google Scholar

    Zhou L S, Xu X R 2021 Acta Acust. 46 1250Google Scholar

    [4]

    张鸿磊 2018 硕士学位论文 (哈尔滨: 哈尔滨工程大学)

    Zhang H L 2018 M. S. Thesis (Harbin: Harbin Engineering University

    [5]

    柴勇, 莫喜平, 刘永平, 潘耀宗, 张运强, 李鹏 2017 声学学报 42 619Google Scholar

    Chai Y, Mo X P, Liu Y P, Pan Y Z, Zhang Y Q 2017 Acta Acust. 42 619Google Scholar

    [6]

    宋哲, 严由嵘 2018 水下无人系统学报 26 498

    Song Z, Yan Y R 2018 J. Unmanned Underw. Systems 26 498

    [7]

    林书玉 2023 声学学报 28 102Google Scholar

    Lin S Y 2023 Acta Acust. 28 102Google Scholar

    [8]

    穆廷荣 1979 声学学报 3 161Google Scholar

    Mu Y R 1979 Acta Acust. 3 161Google Scholar

    [9]

    Been K, Nam S, Lee H, Seo H seon, Moon W 2017 J. Acoust. Soc. Am. 141 4740Google Scholar

    [10]

    Lee J, Been K, Moon W 2023 J. Acoust. Soc. Am. 154 A228Google Scholar

    [11]

    Rogers P H 2005 J. Acoust. Soc. Am. 77 S16Google Scholar

    [12]

    Butler J L 1976 J. Acoust. Soc. Am. 59 480Google Scholar

    [13]

    Sherman C H, Parke N G 2005 J. Acoust. Soc. Am. 38 715Google Scholar

    [14]

    Huang C H, Ma C C, Lin Y C 2005 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 52 1204Google Scholar

    [15]

    Aronov B S 2013 J. Acoust. Soc. Am. 134 1021Google Scholar

    [16]

    胡久龄 2023 博士学位论文 (哈尔滨: 哈尔滨工程大学)

    Hu J L 2023 Ph. D. Dissertation (Harbin: Harbin Engineering University

    [17]

    滕舵 2016 水声换能器基础 第233页

    Teng D 2016 Fundamentals of Hydroacoustic Transducers (Northwestern Polytechnical University Press) p233

    [18]

    Timošenko S P, Woinowsky-Krieger S 1996 Theory of Plates and Shells (New York: McGraw-Hill) p580

    [19]

    曹志远 1989 板壳振动理论 (北京: 中国铁道出版社) 第462页

    Cao Z Y 1989 Plate and Shell Vibration Theory (Beijing: China Railway Press) p462

    [20]

    栾桂冬 2005 压电换能器和换能器阵 (北京: 北京大学出版社) 第479页

    Luan G D 2005 Piezoelectric Transducers and Transducer Arrays (Beijing: Peking University Press) p479

    [21]

    潘瑞, 柴勇, 莫喜平, 刘文钊, 张秀侦 2024 应用声学 43 719Google Scholar

    Pan R, Chai Y, Mo X P, Liu W Z, Zhang X Z 2024 Appl. Acoust. 43 719Google Scholar

    [22]

    张海澜 2012 理论声学(北京: 高等教育出版社) 第139页

    Zhang H L 2012 Theoretical Acoustics (Beijing: Higher Education Press) p139

    [23]

    单影, 许龙, 周光平 2022 压电与声光 44 316Google Scholar

    Dan Y, Xu L, Zhou G P 2022 Piezoelectr. Acoustoopt. 44 316Google Scholar

  • 图 1  圆环的几种弯曲振动模态 (a) r-θ面外横振动; (b) r-θ面内弯曲; (c) r-z面内振动

    Fig. 1.  Several bending vibration modes of a circular ring: (a) Out-of-plane r-θ transverse vibration; (b) in-plane r-θ bending; (c) in-plane r-z vibration.

    图 2  薄壳模型 (a) 圆柱壳体; (b) 微元受力; (c) 弯曲示意

    Fig. 2.  Thin shell model: (a) Cylindrical shell; (b) microelement forces; (c) bending schematic.

    图 3  近似解与高精度数值解的误差

    Fig. 3.  Error between approximate solution and high precision numerical solution.

    图 4  前六阶的振型

    Fig. 4.  The first six order mode shapes.

    图 5  电压函数的分段近似

    Fig. 5.  Segmental approximation of the voltage function.

    图 6  局部等幅激励

    Fig. 6.  Local equal amplitude excitation.

    图 7  区间[a, b]激励下不同阶模态权值Gn

    Fig. 7.  Modal weights Gn of different orders under excitation in interval [a, b].

    图 8  单端激励长度对不同阶模态影响

    Fig. 8.  Effect of single-ended excitation length on different order modes.

    图 9  压电圆环有限元模型及网格划分

    Fig. 9.  Finite element model and meshing of piezoelectric ring.

    图 10  电学开路与电学短路理论误差对比(相较于有限元) (a)第一阶模态误差; (b)第三阶模态误差; (c)第六阶模态误差

    Fig. 10.  Comparison of theoretical errors of electrical open circuit and electrical short circuit (compared to finite element results): (a) Error in the first mode; (b) error in the third mode; (c) error in the sixth mode.

    图 11  有限元计算与理论预测谐振频率(前六阶) (a) ${r_0}/h = $$ 5$; (b) ${r_0}/h = 25$

    Fig. 11.  Finite element calculation and theoretical prediction of resonance frequency (first six orders): (a) ${r_0}/h = 5$; (b) ${r_0}/h = 25$

    图 12  压电圆环样品

    Fig. 12.  Piezoelectric ring sample.

    图 13  单模态激励示意图(三维图红色为正极, 蓝色为负极)

    Fig. 13.  Schematic of conformal excitation (red is positive and blue is negative in 3D).

    图 14  单端激励(a)与常规激励(b)示意图

    Fig. 14.  Schematic diagram of single-ended excitation (a) and conventional excitation (b).

    图 15  电导纳及激光测振系统

    Fig. 15.  Admittance and laser vibration measurement system.

    图 16  单端激励的激光测振图 (a) f = 19656 Hz; (b) f = 24656 Hz; (c) f = 36094 Hz; (d) f = 52594 Hz; (e) f = 72813 kHz; (f) f = 18750 Hz; (g) f = 45500 Hz; (h) 平均振速幅频响应

    Fig. 16.  Vibration with single-ended excitation: (a) f = 19656 Hz; (b) f = 24656 Hz; (c) f = 36094 Hz; (d) f = 52594 Hz; (e) f = 72813 kHz; (f) f = 18750 Hz; (g) f = 45500 Hz; (h) mean amplitude-frequency response of the vibration rate.

    图 17  单端激励实验电导曲线及谐振频率 (a) 单端激励、全激励电导曲线与理论计算弯曲谐振频率; (b) 理论计算、有限元仿真与实验的谐振频率对比

    Fig. 17.  Experimental conductance curves and resonance frequencies for single-ended excitation: (a) Single-ended excitation, full excitation conductance curves and theoretically calculated bending resonance frequencies; (b) comparison of theoretically calculated, finite element simulation and experimental resonance frequencies.

    图 18  单模态激励圆环的电导纳曲线 (a)电导; (b)电纳

    Fig. 18.  Admittance curves of a conformally excited circular ring: (a) Conductance; (b) susceptance.

    图 19  周向不均匀导致的双峰 (a) f = 50750 kHz; (b) f = 52781 kHz; (c)平均振速幅频曲线

    Fig. 19.  Double peak due to circumferential inhomogeneity: (a) f = 50750 kHz; (b) f = 52781 kHz; (c) mean amplitude-frequency response of the vibration rate.

    表 1  n阶模态对应的第m个节点位置z/l

    Table 1.  The m-th node positions z/l corresponding to n-th order modes.

    n m
    1234567
    10.22500.7788
    20.13210.50000.8677
    30.09440.35580.64410.9076
    40.07350.27680.49970.72980.8749
    50.06010.22650.40910.59090.77270.9545
    60.05090.19160.34620.50000.65380.80770.9615
    下载: 导出CSV

    表 2  单端激励激发出前n阶模态对应激励长度

    Table 2.  Excitation lengths of the first n order modes with single-ended excitation.

    n12345
    $ b/{l_{\max }} $0.50190.29040.20770.16160.1322
    下载: 导出CSV

    表 3  PZT-46压电陶瓷的材料参数

    Table 3.  Material parameters of PZT-46 piezoelectric ceramics.

    $ s_{11}^{\text{E}}/{\text{P}}{{\text{a}}^{ - {1}}} $ $ \rho /({\text{kg}} {\cdot} {{\text{m}}^{ - {3}}}) $ $ \varepsilon _{{33}}^{\text{T}}/({\text{F}} {\cdot} {{\text{m}}^{ - {1}}}) $ $ {d_{31}}/\left( {{\text{C}} {\cdot} {{\text{N}}^{ - {1}}}} \right) $ $ {d_{15}}/ ({{\text{C}} {\cdot} {{\text{N}}^{-{1}}}}) $ ${v_{12}}$ ${k_{31}}$
    14.31×10–12 7750 11.51×10–9 –1.56×10–10 4.96×10–10 0.33 0.365
    下载: 导出CSV

    表 4  前五阶弯曲模态谐振频率对比

    Table 4.  Comparison of the first five orders resonance frequencies of bending modes.

    阶数n实验/HzFEM/Hz理论/HzFEM误差/%理论误差/%
    11965619423197951.190.71
    22465624162241922.001.88
    33609435537348811.543.36
    45259452182519210.781.28
    57281372685746230.182.49
    下载: 导出CSV

    表 A1  径厚比${r_0}/h$对电学开路与电学短路理论的影响

    Table A1.  Influence of diameter to thickness ratio on the theory of electrical open circuit and electrical short circuit.

    阶数
    ${r_0}/h$
    5.0 6.3 7.9 10.0 12.6 15.8 19.9 25.1 31.5 39.7 50.0 62.9 79.2
    1有限元/Hz23427223192159621154209052077820726207172073120754207812080720830
    短路频率/Hz25053236262267822060216612140521242211382107321031210052098920978
    开路频率/Hz24276235252303822725225262239922319222682223622215222022219422189
    短路误差/%6.945.855.014.283.623.022.492.031.651.341.080.870.71
    开路误差/%3.635.406.687.437.757.807.687.487.267.046.846.676.52
    2有限元/Hz40544356963159728337258882413922944221562165321340211492103720973
    短路频率/Hz43504368273190428361258782418023044222982181421503213042117821098
    开路频率/Hz35260310812812626090247192381423225228452260222447223492228722248
    短路误差/%7.303.170.970.080.040.170.440.640.740.760.730.670.60
    开路误差/%13.0312.9310.997.934.511.351.223.114.385.195.675.946.08
    3有限元/Hz66373580895026043279373783263829010263492447823211223682182321477
    短路频率/Hz77602629435159342915363893158528135257212407422974222522178421484
    开路频率/Hz58123480954051034885308132793925963246352375923189228222258722438
    短路误差/%16.928.362.650.842.653.233.022.381.651.020.520.180.03
    开路误差/%12.4317.2119.4019.3917.5614.4010.506.512.940.092.033.504.47
    4有限元/Hz95852853737440663912544004619139426340733001627075249832355522608
    短路频率/Hz1252791003248070165355534524432737442323522868026098243292314322362
    开路频率/Hz91537739496026549730417373578731458283902627024839238922327522877
    短路误差/%30.7017.518.462.261.744.035.035.054.453.612.621.751.09
    开路误差/%4.5013.3819.0022.1923.2822.5220.2116.6812.488.264.371.191.19
    5有限元/Hz12755011539310196988402754706375253614451683842233276293892659324652
    短路频率/Hz18569414805111828894818763866199750865423633597931287279242557623976
    开路频率/Hz1345071076898659570092572844745540031345353056327765258452455723707
    短路误差/%45.5928.3016.007.261.212.755.136.216.365.984.983.822.74
    开路误差/%5.456.6815.0820.7124.1025.5625.3323.5420.4516.5612.067.663.83
    6有限元/Hz158793146882131735115583995378442970872591464943041762356903112327819
    短路频率/Hz2585512057691639431308461047128414468040555264590738625332182929826528
    开路频率/Hz18661614884611899895479770296265351559431143680232189289022662025073
    短路误差/%62.8240.0924.4513.215.200.344.006.127.137.516.935.874.64
    开路误差/%17.521.349.6717.3922.6125.7927.2527.1125.5522.9219.0214.479.87
    下载: 导出CSV
  • [1]

    Butler J L, Sherman C H 2016 Transducers and Arrays for Underwater Sound (Cham: Springer International Publishing) p191

    [2]

    滕舵, 王龑, 解柯柯 2018 陕西师范大学学报(自然科学版) 46 30Google Scholar

    Teng D, Wang Y, Xie K K 2018 J. Shaanxi Norm. Uni. (Nat. Sci. Ed. ) 46 30Google Scholar

    [3]

    周利生, 许欣然 2021 声学学报 46 1250Google Scholar

    Zhou L S, Xu X R 2021 Acta Acust. 46 1250Google Scholar

    [4]

    张鸿磊 2018 硕士学位论文 (哈尔滨: 哈尔滨工程大学)

    Zhang H L 2018 M. S. Thesis (Harbin: Harbin Engineering University

    [5]

    柴勇, 莫喜平, 刘永平, 潘耀宗, 张运强, 李鹏 2017 声学学报 42 619Google Scholar

    Chai Y, Mo X P, Liu Y P, Pan Y Z, Zhang Y Q 2017 Acta Acust. 42 619Google Scholar

    [6]

    宋哲, 严由嵘 2018 水下无人系统学报 26 498

    Song Z, Yan Y R 2018 J. Unmanned Underw. Systems 26 498

    [7]

    林书玉 2023 声学学报 28 102Google Scholar

    Lin S Y 2023 Acta Acust. 28 102Google Scholar

    [8]

    穆廷荣 1979 声学学报 3 161Google Scholar

    Mu Y R 1979 Acta Acust. 3 161Google Scholar

    [9]

    Been K, Nam S, Lee H, Seo H seon, Moon W 2017 J. Acoust. Soc. Am. 141 4740Google Scholar

    [10]

    Lee J, Been K, Moon W 2023 J. Acoust. Soc. Am. 154 A228Google Scholar

    [11]

    Rogers P H 2005 J. Acoust. Soc. Am. 77 S16Google Scholar

    [12]

    Butler J L 1976 J. Acoust. Soc. Am. 59 480Google Scholar

    [13]

    Sherman C H, Parke N G 2005 J. Acoust. Soc. Am. 38 715Google Scholar

    [14]

    Huang C H, Ma C C, Lin Y C 2005 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 52 1204Google Scholar

    [15]

    Aronov B S 2013 J. Acoust. Soc. Am. 134 1021Google Scholar

    [16]

    胡久龄 2023 博士学位论文 (哈尔滨: 哈尔滨工程大学)

    Hu J L 2023 Ph. D. Dissertation (Harbin: Harbin Engineering University

    [17]

    滕舵 2016 水声换能器基础 第233页

    Teng D 2016 Fundamentals of Hydroacoustic Transducers (Northwestern Polytechnical University Press) p233

    [18]

    Timošenko S P, Woinowsky-Krieger S 1996 Theory of Plates and Shells (New York: McGraw-Hill) p580

    [19]

    曹志远 1989 板壳振动理论 (北京: 中国铁道出版社) 第462页

    Cao Z Y 1989 Plate and Shell Vibration Theory (Beijing: China Railway Press) p462

    [20]

    栾桂冬 2005 压电换能器和换能器阵 (北京: 北京大学出版社) 第479页

    Luan G D 2005 Piezoelectric Transducers and Transducer Arrays (Beijing: Peking University Press) p479

    [21]

    潘瑞, 柴勇, 莫喜平, 刘文钊, 张秀侦 2024 应用声学 43 719Google Scholar

    Pan R, Chai Y, Mo X P, Liu W Z, Zhang X Z 2024 Appl. Acoust. 43 719Google Scholar

    [22]

    张海澜 2012 理论声学(北京: 高等教育出版社) 第139页

    Zhang H L 2012 Theoretical Acoustics (Beijing: Higher Education Press) p139

    [23]

    单影, 许龙, 周光平 2022 压电与声光 44 316Google Scholar

    Dan Y, Xu L, Zhou G P 2022 Piezoelectr. Acoustoopt. 44 316Google Scholar

  • [1] 王怡, 陈诚, 林书玉. 声黑洞楔形结构振动模式转换超声换能器. 物理学报, 2025, 74(4): . doi: 10.7498/aps.74.20241326
    [2] 张羿双, 桑永杰, 陈永耀, 吴帅. Janus-Helmholtz换能器的振动模态谐振频率理论分析研究. 物理学报, 2024, 73(3): 034303. doi: 10.7498/aps.73.20231251
    [3] 刘洋, 陈诚, 林书玉. 基于声黑洞设计理论的径向夹心式径-弯复合换能器. 物理学报, 2024, 73(8): 084302. doi: 10.7498/aps.73.20231983
    [4] 于天林, 凡凤仙. 竖直振动激励下颗粒毛细上升行为研究. 物理学报, 2022, 71(10): 104501. doi: 10.7498/aps.71.20212333
    [5] 叶欣, 单彦广. 疏水表面振动液滴模态演化与流场结构的数值模拟. 物理学报, 2021, 70(14): 144701. doi: 10.7498/aps.70.20210161
    [6] 陈诚, 林书玉. 基于2-2型压电复合材料的新型宽频带径向振动超声换能器. 物理学报, 2021, 70(1): 017701. doi: 10.7498/aps.70.20201352
    [7] 杜春阳, 郁殿龙, 刘江伟, 温激鸿. X形超阻尼局域共振声子晶体梁弯曲振动带隙特性. 物理学报, 2017, 66(14): 140701. doi: 10.7498/aps.66.140701
    [8] 张小丽, 林书玉, 付志强, 王勇. 弯曲振动薄圆盘的共振频率和等效电路参数研究. 物理学报, 2013, 62(3): 034301. doi: 10.7498/aps.62.034301
    [9] 文岐华, 左曙光, 魏欢. 多振子梁弯曲振动中的局域共振带隙. 物理学报, 2012, 61(3): 034301. doi: 10.7498/aps.61.034301
    [10] 史良马, 刘连忠, 王向贤, 朱仁义. 介观薄圆环中的间隙性超导. 物理学报, 2012, 61(15): 157401. doi: 10.7498/aps.61.157401
    [11] 马焕培, 贺西平, 兰正康, 阿卜力孜·阿卜来提. 弯曲振动矩形板辐射阻抗的计算. 物理学报, 2012, 61(19): 194302. doi: 10.7498/aps.61.194302
    [12] 代显智, 文玉梅, 李平, 杨进, 江小芳. 采用磁电换能器的振动能量采集器. 物理学报, 2010, 59(3): 2137-2146. doi: 10.7498/aps.59.2137
    [13] 贺西平. 弯曲振动阶梯圆盘辐射阻抗的计算方法. 物理学报, 2010, 59(5): 3290-3293. doi: 10.7498/aps.59.3290
    [14] 潘晓娟, 贺西平. 厚圆盘弯曲振动研究. 物理学报, 2010, 59(11): 7911-7916. doi: 10.7498/aps.59.7911
    [15] 沈惠杰, 温激鸿, 郁殿龙, 温熙森. 基于Timoshenko梁模型的周期充液管路弯曲振动带隙特性和传输特性. 物理学报, 2009, 58(12): 8357-8363. doi: 10.7498/aps.58.8357
    [16] 刘延柱. 黏性介质中圆截面弹性细杆的平面振动. 物理学报, 2005, 54(11): 4989-4993. doi: 10.7498/aps.54.4989
    [17] 姚凯伦, 李占杰, 邢彪. 聚乙炔孤子的二维局域振动模及其键弯曲势的影响. 物理学报, 1992, 41(1): 87-96. doi: 10.7498/aps.41.87
    [18] 超声处理组. 宽频带夹芯式压电换能器. 物理学报, 1976, 25(1): 85-87. doi: 10.7498/aps.25.85
    [19] 林鸿荪. 任意横向载荷下弹性圆形及圆环形薄板的弯曲. 物理学报, 1956, 12(4): 360-375. doi: 10.7498/aps.12.360
    [20] 胡海昌. 球面扁薄圆壳的跳跃问题. 物理学报, 1954, 10(2): 105-136. doi: 10.7498/aps.10.105
计量
  • 文章访问数:  1264
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-27
  • 修回日期:  2024-08-03
  • 上网日期:  2024-09-04
  • 刊出日期:  2024-10-05

/

返回文章
返回