搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水合肼还原的氧化石墨烯吸附NO2的实验研究

李闯 蔡理 李伟伟 谢丹 刘保军 向兰 杨晓阔 董丹娜 刘嘉豪 李成 危波

引用本文:
Citation:

水合肼还原的氧化石墨烯吸附NO2的实验研究

李闯, 蔡理, 李伟伟, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 李成, 危波

Adsorption of NO2 by hydrazine hydrate-reduced graphene oxide

Li Chuang, Cai Li, Li Wei-Wei, Xie Dan, Liu Bao-Jun, Xiang Lan, Yang Xiao-Kuo, Dong Dan-Na, Liu Jia-Hao, Li Cheng, Wei Bo
PDF
HTML
导出引用
  • 还原氧化石墨烯由于独特的原子结构, 作为气体检测领域有潜力的候选者引起了研究者们的广泛兴趣. 本文采用水合肼作为还原剂来制备还原氧化石墨烯, 并以此作为叉指电极的气体敏感层, 研究了其对NO2气体的响应特性. 结果表明, 水合肼还原的氧化石墨烯可以实现在室温下对浓度为1—40 ppm (1 ppm = 10–6)的NO2气体的检测, 具有较好的响应性和重复性, 恢复率可以达到71%以上, 但是灵敏度只有0.00201 ppm–1, 还有较大的提升空间. 此外, 对浓度5 ppm的NO2的响应和恢复时间分别是319 s和776 s. 水合肼还原的氧化石墨烯气体传感器的传感机制可归因于NO2分子和传感材料之间的电荷转移. 还原氧化石墨烯的突出电学特性促进了电子转移过程, 这使得传感器在室温下表现出优异的气体传感性能. 本实验研究可为石墨烯基传感器件的应用奠定一定的基础.
    Reduced graphene oxide, as a candidate for gas detection due to its unique atomic structure, is arousing the wide interest of researchers. In this paper, hydrazine hydrate is used to reduce graphene oxide prepared by the modified Hummers method. A chemical resistance gas sensor is fabricated. The prepared reduced graphene oxide is used as a gas sensitive layer of Au planar interdigital electrode. The gas sensing characteristics such as responsivity, recovery and repeatability of NO2 gas are studied. The results show that the graphene oxide reduced by hydrazine hydrate can detect the NO2 gas at a concentration of 1−40 ppm under room temperature. It has good responsivity and repeatability. The recovery rate can reach more than 71%. However, the sensitivity is only 0.00201 ppm–1, and there is much room for improvement. In addition, the response time and recovery time for NO2 at 5 ppm concentration are 319 s and 776 s, respectively. The sensing mechanism of the hydrazine hydrate-reduced graphene oxide gas sensor can be attributed to charge transfer between the NO2 molecule and the sensing material. The outstanding electrical properties of the reduced graphene oxide promote the electron transfer process. This allows the sensor to exhibit excellent gas sensing performance at room temperature. The reduced graphene oxide appears as a typical p-type semiconductor and the oxidizing gas NO2 acts as an electron acceptor. Therefore, the adsorption of NO2 gas leads to the enhancement of the hole density and conductivity of the reduced graphene oxide. Another reason is the presence of defects and oxygen-containing functional groups on graphene sheets. Some oxygen-containing groups remain on the graphene surface after an incomplete reduction reaction. Compared with pure graphene, the reduced graphene oxide has hydroxyl groups and epoxy groups remaining on the surface. These functional groups will functionalize the material and promote the adsorption of gases. At the same time, the reduction reaction will further produce vacancies and structural defects. This will provide more reaction sites and thus conduce to the material further adsorbing the gas. In summary, the experimental research in this paper is of significance for studying the mechanism and characteristics of the reduced graphene oxide by using hydrazine hydrate as a reducing agent, and it can provide reference and lay a foundation for the applications of future graphene sensors.
      通信作者: 蔡理, qianglicai@163.com ; 谢丹, xiedan@tsinghua.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51672154, 51774191, 11405270)、国家重点研发计划(批准号: 2016YFA0200200)和陕西省自然科学基础研究计划(批准号: 2017JM6072)资助的课题.
      Corresponding author: Cai Li, qianglicai@163.com ; Xie Dan, xiedan@tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51672154, 51774191, 11405270), the National Key Research and Development Plan, China (Grant No. 2016YFA0200200), and the Natural Science for Basic Research Program of Shaanxi Province, China (Grant No. 2017JM6072).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    孙建平, 缪应蒙, 曹相春 2013 物理学报 62 036301Google Scholar

    Sun J P, Liao Y M, Cao X C 2013 Acta Phys. Sin. 62 036301Google Scholar

    [3]

    魏晓林, 陈元平, 王如志, 钟建新 2013 物理学报 62 057101Google Scholar

    Wei X L, Chen Y P, Wang R Z, Zhong J X 2013 Acta Phys. Sin. 62 057101Google Scholar

    [4]

    Choudhuri I, Patra N, Mahata A, Ahuja R, Pathak B 2015 J. Phys. Chem. C 119 24827Google Scholar

    [5]

    Gavgani J N, Hasani A, Nouri M, Mahyari M, Salehi A 2016 Sens. Actuator B: Chem. 229 239Google Scholar

    [6]

    Ye Z, Tai H, Xie T, Yuan Z, Liu C, Jiang Y 2016 Sens. Actuator B: Chem. 223 149Google Scholar

    [7]

    Matsuba K, Wang C, Saruwatari K, Uesusuki Y, Akatsuka K, Osada M, Ebina Y, Ma R, Sasaki T 2017 Sci. Adv. 3 e1700414Google Scholar

    [8]

    Pour M M, Lashkov A, Radocea A, Liu X, Sun T, Lipatov A, Korlacki R A, Shekhirev M, Aluru N R, Lyding J W 2017 Nat. Commun. 8 820Google Scholar

    [9]

    Singh E, Meyyappan M, Nalwa H S 2017 ACS Appl. Mater. Interfaces 9 34544Google Scholar

    [10]

    Liu J H, Yang X K, Zhang M L, Wei B, Li C, Dong D N, Li C 2019 IEEE Electron Device Lett. 40 220Google Scholar

    [11]

    Liu J H, Yang X K, Cui H Q, Wang S, Wei B, Li C, Li C, Dong D N 2019 J. Magn. Magn. Mater. 474 161Google Scholar

    [12]

    Zhang T, Ma Y D, Huang B B, Dai Y 2019 ACS Appl. Mater.Interfaces 11 6104

    [13]

    Schedin F, Geim A, Morozov S, Hill E, Blake P, Katsnelson M, Novoselov K 2007 Nat. Mater. 6 652Google Scholar

    [14]

    Venugopal G, Krishnamoorthy K, Mohan R, Kim S J 2012 Mater. Chem. Phys. 132 29Google Scholar

    [15]

    Yasaei P, Kumar B, Hantehzadeh R, Kayyalha M, Baskin A, Repnin N, Wang C, Klie R F, Chen Y P, Král P 2014 Nat. Commun. 5 4911Google Scholar

    [16]

    Chung M G, Kim D H, Lee H M, Kim T, Choi J H, Kyun Seo D, Yoo J B, Hong S H, Kang T J, Kim Y H 2012 Sens. Actuator B: Chem. 166 172

    [17]

    Yavari F, Koratkar N 2012 J. Phys. Chem. Lett. 3 1746Google Scholar

    [18]

    Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim A 2005 Proc. Natl. Acad. Sci. U. S. A. 102 10451Google Scholar

    [19]

    Park S, Ruoff R S 2009 Nat. Nanotechnol. 4 217Google Scholar

    [20]

    Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N 2006 Science 312 1191Google Scholar

    [21]

    韩林芷, 赵占霞, 马忠权 2014 物理学报 63 248103Google Scholar

    Han L Z, Zhao Z X, Ma Z Q 2014 Acta Phys. Sin. 63 248103Google Scholar

    [22]

    Dua V, Surwade S P, Ammu S, Agnihotra S R, Jain S, Roberts K E, Park S, Ruoff R S, Manohar S K 2010 Angew. Chem. 122 2200Google Scholar

    [23]

    Li W, Li X, Cai L, Sun Y, Sun M, Xie D 2018 J. Nanosci. Nanotechnol. 18 7927Google Scholar

    [24]

    Li W, Teng C, Sun Y, Cai L, Xu J L, Sun M, Li X, Yang X, Xiang L, Xie D 2018 ACS Appl. Mater. Interfaces 10 34485Google Scholar

    [25]

    Hu N, Wang Y, Chai J, Gao R, Yang Z, Kong E S W, Zhang Y 2012 Sens. Actuator B: Chem. 163 107Google Scholar

    [26]

    Brodie B 1860 Ann. Chim. Phys. 59 e472

    [27]

    Staudenmaier L 1898 Ber. Dtsch. Chem. Ges. 31 1481Google Scholar

    [28]

    Hummers Jr W S, Offeman R E 1958 J. Am. Chem. Soc. 80 1339Google Scholar

    [29]

    洪菲, 周立群, 黄莹, 宋荷娟, 王婷, 罗辛茹, 伍珍 2012 化学与生物工程 29 31Google Scholar

    Hong F, Zhou L Q, Huang Y, Song H J, Wang T, Luo X R, Wu Z 2012 Chem. Bioeng. 29 31Google Scholar

    [30]

    Compton O C, Nguyen S T 2010 Small 6 711Google Scholar

    [31]

    Lipatov A, Varezhnikov A, Wilson P, Sysoev V, Kolmakov A, Sinitskii A 2013 Nanoscale 5 5426Google Scholar

    [32]

    Ren P G, Yan D X, Ji X, Chen T, Li Z M 2010 Nanotechnology 22 055705

    [33]

    Wan W B, Zhao Z B, Hu H, Zhou Q, Fan Y R, Qiu J S 2011 Carbon 8 2878

    [34]

    Alizadeh T, Soltani L H 2016 Sens. Actuator B: Chem. 234 361Google Scholar

    [35]

    Li D, Müller M B, Gilje S, Kaner R B, Wallace G G 2008 Nat. Nanotechnol. 3 101Google Scholar

    [36]

    Cho B, Hahm M G, Choi M, Yoon J, Kim A R, Lee Y J, Park S G, Kwon J D, Kim C S, Song M 2015 Sci. Rep. 5 8052Google Scholar

    [37]

    Jin C, Tang X, Tan X, Smith S C, Dai Y, Kou L 2019 J. Mater. Chem. A 7 1099Google Scholar

    [38]

    Yang L, Cai Z, Hao L, Ran L, Xu X, Dai Y, Pan S, Jing B, Zou J 2018 Electrochim. Acta 283 448Google Scholar

    [39]

    Ko K Y, Song J G, Kim Y, Choi T, Shin S, Lee C W, Lee K, Koo J, Lee H, Kim J 2016 ACS Nano 10 9287Google Scholar

    [40]

    Lu G, Ocola L E, Chen J 2009 Appl. Phys. Lett. 94 083111Google Scholar

    [41]

    Pearce R, Iakimov T, Andersson M, Hultman L, Spetz A L, Yakimova R 2011 Sens. Actuator B: Chem. 155 451Google Scholar

    [42]

    Yavari F, Castillo E, Gullapalli H, Ajayan P M, Koratkar N 2012 Appl. Phys. Lett. 100 203120Google Scholar

    [43]

    Qazi M, Nomani M W, Chandrashekhar M, Shields V B, Spencer M G, Koley G 2010 Appl. Phys. Express 3 075101Google Scholar

  • 图 1  对1—40 ppm NO2的实时响应曲线

    Fig. 1.  Real-time response curves to 1−40 ppm NO2.

    图 2  响应与浓度的关系

    Fig. 2.  The plot of response vs. concentration.

    图 3  恢复率与浓度的关系图

    Fig. 3.  The plot of recovery vs. concentration.

    图 4  传感器对10 ppm二氧化氮气体响应的重复性测试

    Fig. 4.  Repeatability of the sensor after exposure to 10 ppm NO2.

    图 5  传感器对5 ppm NO2气体的响应和恢复时间

    Fig. 5.  Response and recovery times of the sensor to 5 ppm NO2.

    表 1  不同石墨烯基气体传感器检测NO2性能对比

    Table 1.  Graphene based gas sensors for NO2 detection.

    敏感材料 浓度 响应度 响应时间 恢复时间 文献
    rGO 5 ppm $1.03\left( {{R_{\rm{a}}}/{R_{\rm{g}}}} \right)$ ~5.3 min ~13 min 本文
    低温热还原rGO 2 ppm $1.56\left( {{G_{\rm{g}}} - {G_{\rm{a}}}} \right)/{G_{\rm{a}}}$ ~30 min > 30 min [40]
    机械剥离石墨烯 2.5 ppm $0.005\left( {{R_{\rm{g}}}/{R_{\rm{a}}}} \right)$ ~1 h ~2.5 h [41]
    CVD石墨烯 10 ppm 15% $\left( {\Delta R/{R_{\rm{a}}}} \right)$ ~30 min ~45 min [42]
    外延生长的石墨烯 15 ppm 7.50%$ \left[ {\left( {{G_{\rm{g}}} - {G_{\rm{a}}}} \right)/{G_{\rm{a}}}} \right]$ ~7.5 min ~17 min [43]
    注: a) 1 ppb = 10-9; b) Ga, 在干燥空气中的电导; Gg, 在测试气体中的电导; c) Ra, 在干燥空气中的电阻; Rg, 在测试气体中的电阻; d) $\Delta R$, 由气体浓度变化导致的电阻的相对改变, $\Delta R={R_{\rm{a}}} - {R_{\rm{g}}}.$
    下载: 导出CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    孙建平, 缪应蒙, 曹相春 2013 物理学报 62 036301Google Scholar

    Sun J P, Liao Y M, Cao X C 2013 Acta Phys. Sin. 62 036301Google Scholar

    [3]

    魏晓林, 陈元平, 王如志, 钟建新 2013 物理学报 62 057101Google Scholar

    Wei X L, Chen Y P, Wang R Z, Zhong J X 2013 Acta Phys. Sin. 62 057101Google Scholar

    [4]

    Choudhuri I, Patra N, Mahata A, Ahuja R, Pathak B 2015 J. Phys. Chem. C 119 24827Google Scholar

    [5]

    Gavgani J N, Hasani A, Nouri M, Mahyari M, Salehi A 2016 Sens. Actuator B: Chem. 229 239Google Scholar

    [6]

    Ye Z, Tai H, Xie T, Yuan Z, Liu C, Jiang Y 2016 Sens. Actuator B: Chem. 223 149Google Scholar

    [7]

    Matsuba K, Wang C, Saruwatari K, Uesusuki Y, Akatsuka K, Osada M, Ebina Y, Ma R, Sasaki T 2017 Sci. Adv. 3 e1700414Google Scholar

    [8]

    Pour M M, Lashkov A, Radocea A, Liu X, Sun T, Lipatov A, Korlacki R A, Shekhirev M, Aluru N R, Lyding J W 2017 Nat. Commun. 8 820Google Scholar

    [9]

    Singh E, Meyyappan M, Nalwa H S 2017 ACS Appl. Mater. Interfaces 9 34544Google Scholar

    [10]

    Liu J H, Yang X K, Zhang M L, Wei B, Li C, Dong D N, Li C 2019 IEEE Electron Device Lett. 40 220Google Scholar

    [11]

    Liu J H, Yang X K, Cui H Q, Wang S, Wei B, Li C, Li C, Dong D N 2019 J. Magn. Magn. Mater. 474 161Google Scholar

    [12]

    Zhang T, Ma Y D, Huang B B, Dai Y 2019 ACS Appl. Mater.Interfaces 11 6104

    [13]

    Schedin F, Geim A, Morozov S, Hill E, Blake P, Katsnelson M, Novoselov K 2007 Nat. Mater. 6 652Google Scholar

    [14]

    Venugopal G, Krishnamoorthy K, Mohan R, Kim S J 2012 Mater. Chem. Phys. 132 29Google Scholar

    [15]

    Yasaei P, Kumar B, Hantehzadeh R, Kayyalha M, Baskin A, Repnin N, Wang C, Klie R F, Chen Y P, Král P 2014 Nat. Commun. 5 4911Google Scholar

    [16]

    Chung M G, Kim D H, Lee H M, Kim T, Choi J H, Kyun Seo D, Yoo J B, Hong S H, Kang T J, Kim Y H 2012 Sens. Actuator B: Chem. 166 172

    [17]

    Yavari F, Koratkar N 2012 J. Phys. Chem. Lett. 3 1746Google Scholar

    [18]

    Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim A 2005 Proc. Natl. Acad. Sci. U. S. A. 102 10451Google Scholar

    [19]

    Park S, Ruoff R S 2009 Nat. Nanotechnol. 4 217Google Scholar

    [20]

    Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N 2006 Science 312 1191Google Scholar

    [21]

    韩林芷, 赵占霞, 马忠权 2014 物理学报 63 248103Google Scholar

    Han L Z, Zhao Z X, Ma Z Q 2014 Acta Phys. Sin. 63 248103Google Scholar

    [22]

    Dua V, Surwade S P, Ammu S, Agnihotra S R, Jain S, Roberts K E, Park S, Ruoff R S, Manohar S K 2010 Angew. Chem. 122 2200Google Scholar

    [23]

    Li W, Li X, Cai L, Sun Y, Sun M, Xie D 2018 J. Nanosci. Nanotechnol. 18 7927Google Scholar

    [24]

    Li W, Teng C, Sun Y, Cai L, Xu J L, Sun M, Li X, Yang X, Xiang L, Xie D 2018 ACS Appl. Mater. Interfaces 10 34485Google Scholar

    [25]

    Hu N, Wang Y, Chai J, Gao R, Yang Z, Kong E S W, Zhang Y 2012 Sens. Actuator B: Chem. 163 107Google Scholar

    [26]

    Brodie B 1860 Ann. Chim. Phys. 59 e472

    [27]

    Staudenmaier L 1898 Ber. Dtsch. Chem. Ges. 31 1481Google Scholar

    [28]

    Hummers Jr W S, Offeman R E 1958 J. Am. Chem. Soc. 80 1339Google Scholar

    [29]

    洪菲, 周立群, 黄莹, 宋荷娟, 王婷, 罗辛茹, 伍珍 2012 化学与生物工程 29 31Google Scholar

    Hong F, Zhou L Q, Huang Y, Song H J, Wang T, Luo X R, Wu Z 2012 Chem. Bioeng. 29 31Google Scholar

    [30]

    Compton O C, Nguyen S T 2010 Small 6 711Google Scholar

    [31]

    Lipatov A, Varezhnikov A, Wilson P, Sysoev V, Kolmakov A, Sinitskii A 2013 Nanoscale 5 5426Google Scholar

    [32]

    Ren P G, Yan D X, Ji X, Chen T, Li Z M 2010 Nanotechnology 22 055705

    [33]

    Wan W B, Zhao Z B, Hu H, Zhou Q, Fan Y R, Qiu J S 2011 Carbon 8 2878

    [34]

    Alizadeh T, Soltani L H 2016 Sens. Actuator B: Chem. 234 361Google Scholar

    [35]

    Li D, Müller M B, Gilje S, Kaner R B, Wallace G G 2008 Nat. Nanotechnol. 3 101Google Scholar

    [36]

    Cho B, Hahm M G, Choi M, Yoon J, Kim A R, Lee Y J, Park S G, Kwon J D, Kim C S, Song M 2015 Sci. Rep. 5 8052Google Scholar

    [37]

    Jin C, Tang X, Tan X, Smith S C, Dai Y, Kou L 2019 J. Mater. Chem. A 7 1099Google Scholar

    [38]

    Yang L, Cai Z, Hao L, Ran L, Xu X, Dai Y, Pan S, Jing B, Zou J 2018 Electrochim. Acta 283 448Google Scholar

    [39]

    Ko K Y, Song J G, Kim Y, Choi T, Shin S, Lee C W, Lee K, Koo J, Lee H, Kim J 2016 ACS Nano 10 9287Google Scholar

    [40]

    Lu G, Ocola L E, Chen J 2009 Appl. Phys. Lett. 94 083111Google Scholar

    [41]

    Pearce R, Iakimov T, Andersson M, Hultman L, Spetz A L, Yakimova R 2011 Sens. Actuator B: Chem. 155 451Google Scholar

    [42]

    Yavari F, Castillo E, Gullapalli H, Ajayan P M, Koratkar N 2012 Appl. Phys. Lett. 100 203120Google Scholar

    [43]

    Qazi M, Nomani M W, Chandrashekhar M, Shields V B, Spencer M G, Koley G 2010 Appl. Phys. Express 3 075101Google Scholar

  • [1] 朱洪强, 罗磊, 吴泽邦, 尹开慧, 岳远霞, 杨英, 冯庆, 贾伟尧. 利用掺杂提高石墨烯吸附二氧化氮的敏感性及光学性质的理论计算. 物理学报, 2024, 73(20): 203101. doi: 10.7498/aps.73.20240992
    [2] 陈进龙, 陶然, 李冲, 张健磊, 付琛, 罗景庭. 基于SnS2/In2O3的气体传感器及其室温下高性能NO2检测. 物理学报, 2024, 73(10): 106801. doi: 10.7498/aps.73.20231554
    [3] 樊秦凯, 杨晨光, 胡书新, 徐春华, 李明, 陆颖. 基于热还原氧化石墨烯的单分子表面诱导荧光衰逝技术. 物理学报, 2023, 72(14): 147801. doi: 10.7498/aps.72.20230450
    [4] 李醒龙, 赵浩宇, 武文杰, 蒋卫峰, 郑加金, 张祖兴, 余柯涵, 韦玮. 氧化石墨烯修饰倾斜光纤光栅10–12级重金属离子传感. 物理学报, 2022, 71(5): 050702. doi: 10.7498/aps.71.20211315
    [5] 张改, 谢海妹, 宋海滨, 李晓菲, 张茜, 亢一澜. 不同充放电模式影响还原氧化石墨烯电极储锂性能的实验分析. 物理学报, 2022, 71(6): 066501. doi: 10.7498/aps.71.20211405
    [6] 卢群林, 杨伟煌, 熊飞兵, 林海峰, 庄芹芹. 双轴向应变对单层GeSe气体传感特性的影响. 物理学报, 2020, 69(19): 196801. doi: 10.7498/aps.69.20200539
    [7] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [8] 莫佳伟, 裘银伟, 伊若冰, 吴俊, 王志坤, 赵丽华. 基于温度的亚稳态氧化石墨烯性能. 物理学报, 2019, 68(15): 156501. doi: 10.7498/aps.68.20190670
    [9] 曹渊, 田兴, 程刚, 刘锟, 王贵师, 朱公栋, 高晓明. 基于光纤耦合宽带LED光源的Herriott池 测量NO2的研究. 物理学报, 2019, 68(16): 164201. doi: 10.7498/aps.68.20190243
    [10] 乔志星, 秦成兵, 贺文君, 弓亚妮, 张晓荣, 张国峰, 陈瑞云, 高岩, 肖连团, 贾锁堂. 通过光致还原调制氧化石墨烯寿命并用于微纳图形制备. 物理学报, 2018, 67(6): 066802. doi: 10.7498/aps.67.20172331
    [11] 陈浩, 彭同江, 刘波, 孙红娟, 雷德会. 还原温度对氧化石墨烯结构及室温下H2敏感性能的影响. 物理学报, 2017, 66(8): 080701. doi: 10.7498/aps.66.080701
    [12] 朱冰, 冯灏. 运用R矩阵方法研究低能电子与NO2分子的散射. 物理学报, 2017, 66(24): 243401. doi: 10.7498/aps.66.243401
    [13] 刘学文, 朱重阳, 董辉, 徐峰, 孙立涛. 二硒化铁/还原氧化石墨烯的制备及其在染料敏化太阳能电池中的应用. 物理学报, 2016, 65(11): 118802. doi: 10.7498/aps.65.118802
    [14] 段俊, 秦敏, 方武, 凌六一, 胡仁志, 卢雪, 沈兰兰, 王丹, 谢品华, 刘建国, 刘文清. 非相干宽带腔增强吸收光谱技术应用于实际大气亚硝酸的测量. 物理学报, 2015, 64(18): 180701. doi: 10.7498/aps.64.180701
    [15] 刘研研, 董磊, 武红鹏, 郑华丹, 马维光, 张雷, 尹王保, 贾锁堂. 全光型石英增强光声光谱. 物理学报, 2013, 62(22): 220701. doi: 10.7498/aps.62.220701
    [16] 胡明, 刘青林, 贾丁立, 李明达. n型有序多孔硅基氧化钨室温气敏性能研究. 物理学报, 2013, 62(5): 057102. doi: 10.7498/aps.62.057102
    [17] 石立超, 张巍, 金杰, 黄翊东, 彭江得. 中红外空心Bragg光纤的制备及在气体传感中的应用. 物理学报, 2012, 61(5): 054214. doi: 10.7498/aps.61.054214
    [18] 侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林. 基于光子晶体光纤模间干涉的折射率测量灵敏度分析. 物理学报, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [19] 袁长迎, 炎正馨, 蒙瑰, 李智慧, 尚丽平. 高浓度气体共振光声光谱信号饱和特性研究. 物理学报, 2010, 59(10): 6908-6913. doi: 10.7498/aps.59.6908
    [20] 盛永刚, 徐 耀, 李志宏, 吴 东, 孙予罕, 吴中华. 气体吸附法测定二氧化硅干凝胶的分形维数. 物理学报, 2005, 54(1): 221-227. doi: 10.7498/aps.54.221
计量
  • 文章访问数:  10209
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-20
  • 修回日期:  2019-03-27
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-05

/

返回文章
返回