搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化石墨烯修饰倾斜光纤光栅10–12级重金属离子传感

李醒龙 赵浩宇 武文杰 蒋卫峰 郑加金 张祖兴 余柯涵 韦玮

引用本文:
Citation:

氧化石墨烯修饰倾斜光纤光栅10–12级重金属离子传感

李醒龙, 赵浩宇, 武文杰, 蒋卫峰, 郑加金, 张祖兴, 余柯涵, 韦玮

Graphene oxide modified tilted fiber Bragg grating for 10–12 level heavy metal ion sensing

Li Xing-Long, Zhao Hao-Yu, Wu Wen-Jie, Jiang Wei-Feng, Zheng Jia-Jin, Zhang Zu-Xing, Yu Ke-Han, Wei Wei
PDF
HTML
导出引用
  • 设计了一种氧化石墨烯(GO)功能化的倾斜光纤光栅(TFBG)传感器, 用于检测水溶液中的重金属离子. 通过氧等离子体活化光纤表面, 以及采用GO的无水乙醇分散液, 避免了咖啡环效应引起的GO的团聚和堆叠, 充分了暴露GO的表面和羧基. 吸附重金属离子后, GO-TFBG传感器的透射光谱中的谐振峰发生红移, 这是由GO向重金属离子的电子转移导致的有效折射率变化造成的. 对Pb2+和Cd2+离子最低检测限可达到10–10 mol/L (ng/L量级), 相应灵敏度分别为0.426 dB/(nmol·L–1)和0.385 dB/(nmol·L–1)(2.06和3.43 dB/(μg·L–1)). 此外, GO-TFBG传感器具有出色的器件一致性, 5组传感器的传感性能稳定. 本研究实现了GO纳米片在光纤表面的无团聚和均匀成膜, 获得了具有超大表面积的GO并充分暴露表面羧基实现对重金属离子的吸附, 利用了TFBG不同模式谐振对环境的高度敏感性, 完成了对低浓度重金属离子的高灵敏度、可重复检测. 本研究为提高各种类型的基于二维材料的传感器性能提供了参考.
    Graphene oxide (GO) is an ideal label-free sensing material with its super large specific surface area and abundant surface functional groups. Considering its insulating characteristic, the GO is suitable for optics-based heavy metal ion sensing. However, given the large surface tension of water and the hydrophilicity of GO, the agglomeration or wrinkles of GO nanosheets is usually inevitable during coating with aqueous dispersion. This reduces the accessible surface area and surface functional groups of GO, thereby degrading the sensing performance. Here, an ultra-sensitive GO functionalized tilted fiber Bragg grating (TFBG) sensor is designed to detect heavy metal ions in aqueous solutions. Firstly, a strategy of free energy manipulation is employed to avoid the wrinkles and agglomeration of GO nanosheets. In the scenario of aqueous dispersion, the GO nanosheets will wrinkle as the water droplets evaporate and shrink. In contrast, using the lower-surface-tension ethanol as the dispersant and a high-surface-energy substrate processed by oxygen plasma, the dispersion will evenly spread on the substrate instead of forming droplets. When ethanol evaporates, GO nanosheets are attached to the substrate in largest possible area to reduce the free energy of the system, by which a GO film without agglomeration or wrinkles can be obtained. Secondly, the intrinsic sensitivity of TFBG is conducive to the detection of heavy metal ions in water. Mode interference occurs between the cladding mode and the core mode in the TFBG, and the wavelength and intensity of the interference are highly sensitive to the surrounding temperature, stress, and refractive index. Combining the above characteristics, the GO functionalized TFBG is highly sensitive to Pb2+, Cd2+, and Cu2+ ions in water. These heavy metal ions are adsorbed by the GO, and thus causing the effective refractive index to increase. The results show that the adsorption of heavy metal ions makes the interference peaks red-shifted in the transmission spectrum. The lowest detection limit for Pb2+ and Cd2+ can reach 10–10 mol/L (ng/L level), and the corresponding sensitivities are 0.426 and 0.385 dB/(nmol·L–1) (2.06 and 3.43 dB/(μg·L–1)), respectively. These superior sensing performances benefit from the high specific surface area and accessible carbonyl groups of the unfolded GO, and also rely on the excellent intrinsic sensitivity of TFBG. The GO functionalized TFBG sensor has a promising potential application in environment monitoring.
      通信作者: 郑加金, zhengjj@njupt.edu.cn ; 余柯涵, kehanyu@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62075100, 91950105)资助的课题.
      Corresponding author: Zheng Jia-Jin, zhengjj@njupt.edu.cn ; Yu Ke-Han, kehanyu@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62075100, 91950105).
    [1]

    Cui L, Wu J, Ju H 2015 Biosens. Bioelectron. 63 276Google Scholar

    [2]

    Bansod B, Kumar T, Thakur R, Rana S, Singh I 2017 Biosens. Bioelectron. 94 443Google Scholar

    [3]

    Zhang H, Faye D, Lefèvre J P, Delaire J A, Leray I 2013 Microchem. J. 106 167Google Scholar

    [4]

    Moo J G, Khezri B, Webster R D, Pumera M 2014 Chemphyschem 15 2922Google Scholar

    [5]

    Mei M, Pang J, Huang X, Luo Q 2019 Anal. Chim. Acta 1090 82Google Scholar

    [6]

    Chen L, Wang Z, Pei J, Huang X 2020 Anal. Chem. 92 2251Google Scholar

    [7]

    Lou J, Wang Y, Tong L 2014 Sensors 14 5823Google Scholar

    [8]

    Ji W B, Yap S H K, Panwar N, Zhang L L, Lin B, Yong K T, Tjin S C, Ng W J, Majid M B A 2016 Sens. Actuators, B 237 142Google Scholar

    [9]

    Cai S, Pan H, Gonzalez-Vila A, Guo T, Gillan D C, Wattiez R, Caucheteur C 2020 Opt. Express 28 19740Google Scholar

    [10]

    Liu C, Sun Z, Zhang L, Lv J, Yu X F, Zhang L, Chen X 2018 Sens. Actuators, B 257 1093Google Scholar

    [11]

    Albert J, Shao L Y, Caucheteur C 2013 Laser Photonics Rev. 7 83Google Scholar

    [12]

    Si Y, Lao J, Zhang X, Liu Y, Cai S, Gonzalez-Vila A, Li K, Huang Y, Yuan Y, Caucheteur C, Guo T 2019 J. Light Technol. 37 3495Google Scholar

    [13]

    Wang F, Zhang Y, Lu M, Du Y, Chen M, Meng S, Ji W, Sun C, Peng W 2021 Sens. Actuators, B 337 129816Google Scholar

    [14]

    Chiu Y D, Wu C W, Chiang C C 2017 Sensors 17 2129Google Scholar

    [15]

    Wang Y Q, Shen C Y, Lou W M, Shentu F Y, Zhong C, Dong X Y, Tong L M 2016 Appl. Phys. Lett. 109 031107Google Scholar

    [16]

    Peng W, Li H, Liu Y, Song S 2017 J. Mol. Liq. 230 496Google Scholar

    [17]

    Shivananju B N, Yu W, Liu Y, Zhang Y, Lin B, Li S, Bao Q 2017 Adv. Funct. Mater. 27 1603918Google Scholar

    [18]

    Wang R, Ren Z, Kong D, Wu H, Hu B, He Z 2020 Appl. Phys. Express 13 067001Google Scholar

    [19]

    Cote L J, Kim F, Huang J X 2009 J. Am. Chem. Soc. 131 1043Google Scholar

    [20]

    Zhang J L, Fu H W, Ding J J, Zhang M, Zhu Y 2017 Appl. Opt. 56 8828Google Scholar

    [21]

    Kumar S, Singh R, Zhu G, Yang Q S, Zhang X, Cheng S, Zhang B Y, Kaushik B K, Liu F Z 2020 IEEE Trans. Nanobiosci. 19 173Google Scholar

    [22]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 1997 Nature 389 827Google Scholar

    [23]

    Park S H, Kim H K, Yoon S B, Lee C W, Ahn D, Lee S I, Roh K C, Kim K B 2015 Chem. Mater. 27 457Google Scholar

    [24]

    Parviz D, Metzler S D, Das S, Irin F, Green M J 2015 Small 11 2661Google Scholar

    [25]

    Jiang B Q, Lu X, Gan X T, Qi M, Wang Y D, Han L, Mao D, Zhang W D, Ren Z Y, Zhao J L 2015 Opt. Lett. 40 3994Google Scholar

    [26]

    Liu F, Ha H D, Han D J, Seo T S 2013 Small 9 3410Google Scholar

    [27]

    Sitko R, Turek E, Zawisza B, Malicka E, Talik E, Heimann J, Gagor A, Feist B, Wrzalik R 2013 Dalton Trans. 42 5682Google Scholar

    [28]

    World Health Organization https://apps.who.int/iris/bitstream/handle/10665/44584/9789241548151_eng.pdf?sequence=1 [2011-3-21]

    [29]

    Gong X, Bi Y, Zhao Y, Liu G, Teoh W Y 2014 RSC Adv. 4 24653Google Scholar

    [30]

    Bard A J, Faulkner L R 2001 Electrochemical Methods: Fundamentals and Applications (New York: Wiley) pp8–12

    [31]

    Wang H, Yuan X Z, Wu Y, Huang H J, Zeng G M, Liu Y, Wang X L, Lin N B, Qi Y 2013 Appl. Surf. Sci. 279 432Google Scholar

    [32]

    Sui X, Pu H, Maity A, Chang J, Jin B, Lu G, Wang Y, Ren R, Mao S, Chen J 2020 ECS J. Solid State Sci. Technol. 9 115012Google Scholar

    [33]

    Yap S H K, Chien Y H, Tan R, Bin Shaik Alauddin A R, Ji W B, Tjin S C, Yong K T 2018 ACS Sens. 3 2506Google Scholar

  • 图 1  TFBG示意图

    Fig. 1.  Schematics of a TFBG.

    图 2  传感实验平台

    Fig. 2.  Platform for sensing experiments.

    图 3  GO水分散液及GO乙醇分散液在衬底上的干燥过程

    Fig. 3.  Drying process of GO aqueous dispersion and GO ethanol dispersion on the substrate.

    图 4  (a) GO乙醇分散液和(b)水基分散液湿法制备薄膜的AFM图像; (c), (d)水基分散液制备薄膜的SEM图像

    Fig. 4.  AFM images of the film prepared by (a) GO ethanol dispersion and (b) water-based dispersion; (c), (d) SEM images of the film prepared by the water-based dispersion.

    图 5  (a) GO涂敷前和(b) GO涂敷后TFBG栅区表面的光学显微镜图像; (c), (d) GO涂敷后栅区表面的SEM图像

    Fig. 5.  Optical microscope image of the surface of the TFBG grid area (a) before and (b) after GO coating; (c), (d) SEM images of the surface of the grid area after GO coating.

    图 6  (a) GO涂敷前后透射光谱的对比; (b)不同浓度Cd2+离子环境下GO-TFBG的透射光谱; (c) 1539.5 nm附近谐振峰对Cd2+离子的响应; (d)使用含水的GO乙醇分散液成膜的GO-TFBG传感响应

    Fig. 6.  (a) Comparison of transmission spectrum before and after GO coating; (b) transmission spectra of GO-TFBG under different concentrations of Cd2+; (c) response of the resonance peak near 1539.5 nm to Cd2+; (d) sensor response of GO-TFBG film formed using aqueous GO ethanol dispersion.

    图 7  GO-TFBG对不同浓度(a) Pb2+离子和(b) Cu2+离子的响应

    Fig. 7.  Responses of GO-TFBG to different concentrations of (a) Pb2+ and (b) Cu2+.

    图 8  1539.46 nm处光强对不同浓度重金属离子的响应(误差分析来源于5次GO涂敷-测试-擦除-涂敷循环)

    Fig. 8.  Response of light intensity at 1539.46 nm to different concentrations of heavy metal ions. The error analysis is derived from five GO coating-test-wipe-coating cycles.

    表 1  不同重金属离子传感器的性能比较

    Table 1.  Performance comparison of different heavy metal ion sensors.

    传感结构方法离子灵敏度检测限
    dB/(nmol·L–1)dB/(μg·L–1)nmol·L–1μg·L–1
    本工作模式耦合Pb2+0.4262.060.130.027
    Cd2+0.3853.430.160.018
    Cu2+0.0190.031.190.076
    FET[32]电化学Pb2+6.2741.3
    TFBG[13]SPRPb2+1.335×10–36.443×10–38.56×10–31.774×10–3
    TFBG[9]SPRCd2+8.8971
    拉锥光纤[33]干涉Pb2+24.1315
    TFBG[10]模式耦合Pb2+1.036×10–40.5×10–31.2070.25
    TFBG[12]SPRPb2+0.10.021
    下载: 导出CSV
  • [1]

    Cui L, Wu J, Ju H 2015 Biosens. Bioelectron. 63 276Google Scholar

    [2]

    Bansod B, Kumar T, Thakur R, Rana S, Singh I 2017 Biosens. Bioelectron. 94 443Google Scholar

    [3]

    Zhang H, Faye D, Lefèvre J P, Delaire J A, Leray I 2013 Microchem. J. 106 167Google Scholar

    [4]

    Moo J G, Khezri B, Webster R D, Pumera M 2014 Chemphyschem 15 2922Google Scholar

    [5]

    Mei M, Pang J, Huang X, Luo Q 2019 Anal. Chim. Acta 1090 82Google Scholar

    [6]

    Chen L, Wang Z, Pei J, Huang X 2020 Anal. Chem. 92 2251Google Scholar

    [7]

    Lou J, Wang Y, Tong L 2014 Sensors 14 5823Google Scholar

    [8]

    Ji W B, Yap S H K, Panwar N, Zhang L L, Lin B, Yong K T, Tjin S C, Ng W J, Majid M B A 2016 Sens. Actuators, B 237 142Google Scholar

    [9]

    Cai S, Pan H, Gonzalez-Vila A, Guo T, Gillan D C, Wattiez R, Caucheteur C 2020 Opt. Express 28 19740Google Scholar

    [10]

    Liu C, Sun Z, Zhang L, Lv J, Yu X F, Zhang L, Chen X 2018 Sens. Actuators, B 257 1093Google Scholar

    [11]

    Albert J, Shao L Y, Caucheteur C 2013 Laser Photonics Rev. 7 83Google Scholar

    [12]

    Si Y, Lao J, Zhang X, Liu Y, Cai S, Gonzalez-Vila A, Li K, Huang Y, Yuan Y, Caucheteur C, Guo T 2019 J. Light Technol. 37 3495Google Scholar

    [13]

    Wang F, Zhang Y, Lu M, Du Y, Chen M, Meng S, Ji W, Sun C, Peng W 2021 Sens. Actuators, B 337 129816Google Scholar

    [14]

    Chiu Y D, Wu C W, Chiang C C 2017 Sensors 17 2129Google Scholar

    [15]

    Wang Y Q, Shen C Y, Lou W M, Shentu F Y, Zhong C, Dong X Y, Tong L M 2016 Appl. Phys. Lett. 109 031107Google Scholar

    [16]

    Peng W, Li H, Liu Y, Song S 2017 J. Mol. Liq. 230 496Google Scholar

    [17]

    Shivananju B N, Yu W, Liu Y, Zhang Y, Lin B, Li S, Bao Q 2017 Adv. Funct. Mater. 27 1603918Google Scholar

    [18]

    Wang R, Ren Z, Kong D, Wu H, Hu B, He Z 2020 Appl. Phys. Express 13 067001Google Scholar

    [19]

    Cote L J, Kim F, Huang J X 2009 J. Am. Chem. Soc. 131 1043Google Scholar

    [20]

    Zhang J L, Fu H W, Ding J J, Zhang M, Zhu Y 2017 Appl. Opt. 56 8828Google Scholar

    [21]

    Kumar S, Singh R, Zhu G, Yang Q S, Zhang X, Cheng S, Zhang B Y, Kaushik B K, Liu F Z 2020 IEEE Trans. Nanobiosci. 19 173Google Scholar

    [22]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 1997 Nature 389 827Google Scholar

    [23]

    Park S H, Kim H K, Yoon S B, Lee C W, Ahn D, Lee S I, Roh K C, Kim K B 2015 Chem. Mater. 27 457Google Scholar

    [24]

    Parviz D, Metzler S D, Das S, Irin F, Green M J 2015 Small 11 2661Google Scholar

    [25]

    Jiang B Q, Lu X, Gan X T, Qi M, Wang Y D, Han L, Mao D, Zhang W D, Ren Z Y, Zhao J L 2015 Opt. Lett. 40 3994Google Scholar

    [26]

    Liu F, Ha H D, Han D J, Seo T S 2013 Small 9 3410Google Scholar

    [27]

    Sitko R, Turek E, Zawisza B, Malicka E, Talik E, Heimann J, Gagor A, Feist B, Wrzalik R 2013 Dalton Trans. 42 5682Google Scholar

    [28]

    World Health Organization https://apps.who.int/iris/bitstream/handle/10665/44584/9789241548151_eng.pdf?sequence=1 [2011-3-21]

    [29]

    Gong X, Bi Y, Zhao Y, Liu G, Teoh W Y 2014 RSC Adv. 4 24653Google Scholar

    [30]

    Bard A J, Faulkner L R 2001 Electrochemical Methods: Fundamentals and Applications (New York: Wiley) pp8–12

    [31]

    Wang H, Yuan X Z, Wu Y, Huang H J, Zeng G M, Liu Y, Wang X L, Lin N B, Qi Y 2013 Appl. Surf. Sci. 279 432Google Scholar

    [32]

    Sui X, Pu H, Maity A, Chang J, Jin B, Lu G, Wang Y, Ren R, Mao S, Chen J 2020 ECS J. Solid State Sci. Technol. 9 115012Google Scholar

    [33]

    Yap S H K, Chien Y H, Tan R, Bin Shaik Alauddin A R, Ji W B, Tjin S C, Yong K T 2018 ACS Sens. 3 2506Google Scholar

  • [1] 陆海林, 段芳莉. 硅基材料界面石墨烯片层运动行为及其摩擦特性. 物理学报, 2021, 70(14): 143101. doi: 10.7498/aps.70.20210088
    [2] 陈超, 段芳莉. 氧化石墨烯褶皱行为与结构的分子模拟研究. 物理学报, 2020, 69(19): 193102. doi: 10.7498/aps.69.20200651
    [3] 陈璐, 李烨飞, 郑巧玲, 刘庆坤, 高义民, 李博, 周长猛. B2-和B19'-NiTi表面原子弛豫、表面能、电子结构及性能的理论研究. 物理学报, 2019, 68(5): 053101. doi: 10.7498/aps.68.20181944
    [4] 林启民, 张霞, 芦启超, 罗彦彬, 崔建功, 颜鑫, 任晓敏, 黄雪. 氧化石墨烯的结构稳定性及硝酸催化作用的第一性原理研究. 物理学报, 2019, 68(24): 247302. doi: 10.7498/aps.68.20191304
    [5] 莫佳伟, 裘银伟, 伊若冰, 吴俊, 王志坤, 赵丽华. 基于温度的亚稳态氧化石墨烯性能. 物理学报, 2019, 68(15): 156501. doi: 10.7498/aps.68.20190670
    [6] 孙锐, 陈晨, 令维军, 张亚妮, 康翠萍, 许强. 基于氧化石墨烯的瓦级调Q锁模Tm: LuAG激光器. 物理学报, 2019, 68(10): 104207. doi: 10.7498/aps.68.20182224
    [7] 乔志星, 秦成兵, 贺文君, 弓亚妮, 张晓荣, 张国峰, 陈瑞云, 高岩, 肖连团, 贾锁堂. 通过光致还原调制氧化石墨烯寿命并用于微纳图形制备. 物理学报, 2018, 67(6): 066802. doi: 10.7498/aps.67.20172331
    [8] 陈浩, 彭同江, 刘波, 孙红娟, 雷德会. 还原温度对氧化石墨烯结构及室温下H2敏感性能的影响. 物理学报, 2017, 66(8): 080701. doi: 10.7498/aps.66.080701
    [9] 曹海燕, 毕恒昌, 谢骁, 苏适, 孙立涛. 氧化石墨烯基功能纸的简易制备和染料吸附性能. 物理学报, 2016, 65(14): 146802. doi: 10.7498/aps.65.146802
    [10] 林文强, 徐斌, 陈亮, 周峰, 陈均朗. 双酚A在氧化石墨烯表面吸附的分子动力学模拟. 物理学报, 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [11] 黄诗盛, 王勇刚, 李会权, 林荣勇, 闫培光. 氧化石墨烯被动锁模掺镱光纤激光器多脉冲现象的实验研究. 物理学报, 2014, 63(8): 084202. doi: 10.7498/aps.63.084202
    [12] 肖红星, 龙冲生. UO2 晶体中低密勒指数晶面表面能的分子动力学模拟. 物理学报, 2013, 62(10): 103104. doi: 10.7498/aps.62.103104
    [13] 陆晶晶, 冯苗, 詹红兵. 氧化石墨烯/壳聚糖复合薄膜材料的制备及其非线性光限幅效应的研究. 物理学报, 2013, 62(1): 014204. doi: 10.7498/aps.62.014204
    [14] 高岩, 陈瑞云, 吴瑞祥, 张国锋, 肖连团, 贾锁堂. 电场诱导氧化石墨烯的极化动力学特性研究. 物理学报, 2013, 62(23): 233601. doi: 10.7498/aps.62.233601
    [15] 舒瑜, 张研, 张建民. Cu 表面性质的第一性原理分析. 物理学报, 2012, 61(1): 016108. doi: 10.7498/aps.61.016108
    [16] 王博, 张建民, 路彦冬, 甘秀英, 殷保祥, 徐可为. fcc金属表面能的各向异性分析及表面偏析的预测. 物理学报, 2011, 60(1): 016601. doi: 10.7498/aps.60.016601
    [17] 黄 晋, 孙其诚. 一维液态泡沫渗流实验研究及表面能和粘性耗散分析. 物理学报, 2007, 56(10): 6124-6131. doi: 10.7498/aps.56.6124
    [18] 张 超, 唐 鑫, 王永亮, 张庆瑜. 替位杂质对贵金属(111)表面稳定性影响的分子动力学研究. 物理学报, 2005, 54(12): 5791-5796. doi: 10.7498/aps.54.5791
    [19] 张建民, 徐可为, 马 飞. 用改进嵌入原子法计算Cu晶体的表面能. 物理学报, 2003, 52(8): 1993-1999. doi: 10.7498/aps.52.1993
    [20] 刘红. 双轴向列相液晶的表面能. 物理学报, 2002, 51(12): 2786-2792. doi: 10.7498/aps.51.2786
计量
  • 文章访问数:  4871
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-16
  • 修回日期:  2021-12-10
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-03-05

/

返回文章
返回