搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于声学扫描振镜的超声/光声双模态成像技术

胥守振 谢实梦 吴丹 迟子惠 黄林

引用本文:
Citation:

基于声学扫描振镜的超声/光声双模态成像技术

胥守振, 谢实梦, 吴丹, 迟子惠, 黄林

Ultrasound/photoacoustic dual-modality imaging based on acoustic scanning galvanometer

Xu Shou-Zhen, Xie Shi-Meng, Wu Dan, Chi Zi-Hui, Huang Lin
PDF
HTML
导出引用
  • 超声/光声双模态成像技术因其同时兼具超声的高分辨率结构成像和光声的高对比度功能成像优势, 极大地推动了光声成像技术的临床应用推广. 传统超声/光声双模态成像技术多基于超声成像所用阵列探头同时收集光声信号, 系统结构紧凑且无需图像配准, 操作便捷. 但该类设备使用阵列探头和多通道数据采集, 使得其成本较高; 且成像结果易受通道一致性差异影响. 本文提出了一种基于声学扫描振镜的超声/光声双模态成像技术, 该技术采用单个超声换能器结合一维声学扫描振镜进行快速声束扫描, 实现超声/光声双模态成像, 是一种小型化、低成本的双模态快速成像技术. 本文开展了系列仿体和活体成像研究, 实验结果表明: 系统有效成像范围为15.6 mm, 超声和光声成像B扫描速度分别为1.0 s–1和0.1 s–1 (光声成像速度主要受制于脉冲激光器重复频率). 基于本文所提技术研究, 有助于进一步推动超声/光声双模态成像技术的临床转化和普及; 也为基于超声信号检测的多模态成像技术提供了一种低成本、小型化和快速声信号检测的参考方案.
    Ultrasound/photoacoustic dual-modality imaging technology has greatly promoted the clinical application and photoacoustic imaging technology because it integrates the advantages of high-resolution structural imaging of ultrasound and high-contrast functional imaging of photoacoustic imaging. Traditional ultrasound/photoacoustic dual-modality imaging is based mainly on the array probe used in ultrasound imaging to collect photoacoustic signals at the same time. The system has a compact structure and easy operation. However, this kind of equipment utilizes array probes and multi-channel data acquisition system, which makes it expensive. And the imaging quality can be affected by the difference in channel consistency. In this paper, an ultrasound/photoacoustic dual-modality imaging method based on an acoustic scanning galvanometer is proposed. In this system, a single ultrasonic transducer combined with a one-dimensional acoustic scanning galvanometer is used for fast acoustic beam scanning to realize ultrasound/photoacoustic dual-modality imaging. It is a compact, low-cost and fast dual-modality imaging technology. The experimental results show that the effective imaging range of the system is 15.6 mm, and the temporal resolution of ultrasound and photoacoustic imaging are 1.0 and 0.1 s–1 (B scan), respectively (the temporal resolution of photoacoustic imaging is limited mainly by the laser repetition rate). Based on the proposed technology research, it is helpful to further promote the clinical transformation and popularization of ultrasound/photoacoustic dual-modality imaging. It also provides a low-cost, miniaturized and fast scheme for multimodal imaging technology which is based on ultrasound signal detection.
      通信作者: 黄林, lhuang@uestc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 82071940, 62001075)和重庆市教育委员会青年基金(批准号: KJQN20200607, KJQN20200610)资助的课题.
      Corresponding author: Huang Lin, lhuang@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 82071940, 62001075) and the Young Scientists Fund of the Scientific and Technological Research Program of Chongqing Municipal Education Commission, China (Grant Nos. KJQN20200607, KJQN20200610).
    [1]

    林日强, 冷吉, 陈敬钦, 刘成波, 龚小竞, 宋亮 2018 中国医疗设备 33 1Google Scholar

    Lin R Q, Leng J, Chen J Q, Liu C B, Gong L J, Song L 2018 Chin. Med. Dev. 33 1Google Scholar

    [2]

    Beard P 2011 Interface Focus 1 602Google Scholar

    [3]

    黄豆豆, 邱棋, 林文珍, 刘基嫣, 黄雅丽, 赵庆亮 2019 光散射学报 31 1Google Scholar

    Huang D D, Qiu Q, Lin W Z, Liu J Y, Huang Y L, Zhao Q L 2019 Chin. J. Light. Scatt. 31 1Google Scholar

    [4]

    Xu G, Rajian J R, Girish G, Kaplan M J, Fowlkes J B, Carson P L, Wang X D 2012 J. Biomed. Opt. 18 10502Google Scholar

    [5]

    Berg P J, Bansal R, Daoudi K, Steenbergen W, Prakash J 2016 Biomed. Opt. Express 7 5081Google Scholar

    [6]

    Garcia-Uribe A, Erpelding T N, Krumholz A, Ke H, Maslov K, Appleton C, Margenthaler J A, Wang L V 2015 Sci. Rep. 5 15748Google Scholar

    [7]

    Florian R, Julien S, Marilyne L M, Stéphanie R, Sharuja N, Stéphanie L, Alain L P 2016 Plos. One 11 4Google Scholar

    [8]

    Yang M, Zhao L, He X, Su N, Zhao C, Tang H, Hong T, Li W, Yang F, Lin L, Zhang B, Zhang R, Jiang Y, Li C 2017 Biomed. Opt. Express 8 3449Google Scholar

    [9]

    Li X, Wang D, Ran H, Hao L, Cao Y, Ao M, Zhang N, Song J, Zhang L, Yi H, Wang Z, Li P 2018 Biochem. Biophys. Res. Commun. 502 255Google Scholar

    [10]

    Mallidi S, Watanabe K, Timerman D, Schoenfeld D, Hasan T 2015 Theranostics 5 289Google Scholar

    [11]

    Qian M, Du Y, Wang S, Li C, Jiang H, Shi W, Chen J, Wang Y, Wagner E, Huang R 2018 ACS Appl. Mater. Inter. 10 4031Google Scholar

    [12]

    Diot G, Metz S, Noske A, Liapis E, Schroeder B, Ovsepian S V, Meier R, Rummeny E, Ntziachristos V 2017 Clin. Cancer Res. 23 6912Google Scholar

    [13]

    Toi M, Asao Y, Matsumoto Y, Sekiguchi H, Yoshikawa A, Takada M, Kataoka M, Endo T, Kawaguchi-Sakita N, Kawashima M, Fakhrejahani E, Kanao S, Yamaga I, Nakayama Y, Tokiwa M, Torii M, Yagi T, Sakurai T, Togashi K, Shiina T 2017 Sci. Rep. 7 41970Google Scholar

    [14]

    Yang J-M, Favazza C, Chen R, Yao J, Cai X, Maslov K, Zhou Q, Shung K K, Wang L V 2012 Nat. Med. 18 1297Google Scholar

    [15]

    Li Y, Lin R, Liu C, Chen J, Liu H, Zheng R, Gong X, Song L 2018 J. Biophotonics 11 e201800034Google Scholar

    [16]

    Oeri M, Bost W, Senegond N, Tretbar S, Fournelle M 2017 Ultrasound Med. Biol. 43 2200Google Scholar

    [17]

    Daoudi K, van den Berg P J, Rabot O, Kohl A, Tisserand S, Brands P, Steenbergen W 2014 Opt. Express 22 26365Google Scholar

    [18]

    谢实梦, 黄林, 王雪, 迟子惠, 汤永辉, 郑铸, 蒋华北 2021 物理学报 70 100701Google Scholar

    Xie S M, Huang L, Wang L, Chi Z H, Tang Y H, Zheng Z, Jiang H B 2021 Acta Phys. Sin. 70 100701Google Scholar

    [19]

    Choi S, Kim J Y, Lim H G, Baik J W, Kim H H, Kim C 2020 Sci. Rep. 10 6544Google Scholar

    [20]

    齐伟智 2018 博士学位论文 (成都: 电子科技大学)

    Qi W Z 2018 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [21]

    Xi L, Sun J, Zhu Y, Wu L, Xie H, Jiang H 2010 Biomed. Opt. Express 1 1278Google Scholar

    [22]

    Lee C, Kim J Y, Kim C 2018 Micromachines 9 584Google Scholar

    [23]

    Yao J, Huang C H, Wang L, Yang J M, Gao L, Maslov K I, Zou J, Wang L V 2012 J. Biomed. Opt. 17 080505Google Scholar

    [24]

    Kim J Y, Lee C, Park K, Lim G, Kim C 2015 Sci. Rep. 5 7932Google Scholar

    [25]

    Kim S, Lee C, Kim J Y, Kim J, Lim G, Kim C 2016 J. Biomed. Opt. 21 106001Google Scholar

    [26]

    Kim J Y, Lee C, Lim G, Kim C 2016 Photons Plus Ultrasound: Imaging and Sensing San Francisco, 15 March 2016, p970835

    [27]

    Pu Y, Bi R, Ahn J, Kim J Y, Kim C, Olivo M, Zhao X J 2019 Photons Plus Ultrasound: Imaging and Sensing San Francisco, 27 February 2019, p1087843

    [28]

    Park K, Kim J Y, Lee C, Jeon S, Lim G, Kim C 2017 Sci. Rep. 7 13359Google Scholar

    [29]

    American Laser Institute. American National Standards for the Safe Use of Lasers ANSIZ136.1. Orlando, FL: American Laser Institute, 2014

    [30]

    Wang L V, Hu S 2012 Science 335 1458Google Scholar

    [31]

    汤永辉, 郑铸, 谢实梦, 黄林, 蒋华北 2020 物理学报 69 240701Google Scholar

    Tang Y H, Zheng Z, Xie S M, Huang L, Jiang H B 2020 Acta Phys. Sin. 69 240701Google Scholar

  • 图 1  (a) 超声/光声双模态成像系统框图; (b) 一维声学扫描振镜实物图; (c) 模具实物图

    Fig. 1.  (a) Schematic of the ultrasound/photoacoustic dual-modality imaging system; (b) photograph of the acoustic scanning galvanometer; (c) picture of the mould.

    图 2  分辨率和成像区域实验 (a)银针实物图; (b)超声实验结果; (c)沿图(b)红色虚线的一维信号轮廓图像

    Fig. 2.  Resolution and imaging region experiments: (a) Photograph of the silver needles; (b) ultrasound (US) results; (c) one dimensional signal profile along the red dashed line shown in (b).

    图 3  超声/光声双模态实验结果展示 (a)实验对象实物图; (b)超声图像; (c)光声图像; (d)超声和光声的双模态图像

    Fig. 3.  Results of ultrasound/photoacoustic dual-modality experiment: (a) Photograph of experimental subject; (b) image of ultrasound (US); (c) image of photoacoustic (PA); (d) the fused US/PA image.

    图 4  缝纫线实验结果展示 (a)实物图; (b)超声图像; (c)光声图像

    Fig. 4.  Experimental results of sewing thread: (a) Photograph of sewing thread; (b) image of ultrasound; (c) image of photoacoustic.

    图 5  兔子耳朵活体实验成像结果展示 (a)兔子耳朵实物图; (b)光声图像; (c)超声图像

    Fig. 5.  Results of rabbit ear in vivo: (a) Photograph of rabbit ear; (b) image of photoacoustic; (c) image of ultrasound.

    表 1  光声显微成像中扫描机制对比

    Table 1.  Comparison of scanning methods in photoacoustic microscopy imaging.

    扫描方式优点缺点应用
    传统机械扫描结构简单体积大、笨重、成像速度慢
    扇形扫描体积小需要特殊的小重量传感器
    音圈扫描体积小、速度快负载能力弱、扫描范围小
    扫描振镜扫描体积小、速度快需要高精度器件和配准较多
    下载: 导出CSV
  • [1]

    林日强, 冷吉, 陈敬钦, 刘成波, 龚小竞, 宋亮 2018 中国医疗设备 33 1Google Scholar

    Lin R Q, Leng J, Chen J Q, Liu C B, Gong L J, Song L 2018 Chin. Med. Dev. 33 1Google Scholar

    [2]

    Beard P 2011 Interface Focus 1 602Google Scholar

    [3]

    黄豆豆, 邱棋, 林文珍, 刘基嫣, 黄雅丽, 赵庆亮 2019 光散射学报 31 1Google Scholar

    Huang D D, Qiu Q, Lin W Z, Liu J Y, Huang Y L, Zhao Q L 2019 Chin. J. Light. Scatt. 31 1Google Scholar

    [4]

    Xu G, Rajian J R, Girish G, Kaplan M J, Fowlkes J B, Carson P L, Wang X D 2012 J. Biomed. Opt. 18 10502Google Scholar

    [5]

    Berg P J, Bansal R, Daoudi K, Steenbergen W, Prakash J 2016 Biomed. Opt. Express 7 5081Google Scholar

    [6]

    Garcia-Uribe A, Erpelding T N, Krumholz A, Ke H, Maslov K, Appleton C, Margenthaler J A, Wang L V 2015 Sci. Rep. 5 15748Google Scholar

    [7]

    Florian R, Julien S, Marilyne L M, Stéphanie R, Sharuja N, Stéphanie L, Alain L P 2016 Plos. One 11 4Google Scholar

    [8]

    Yang M, Zhao L, He X, Su N, Zhao C, Tang H, Hong T, Li W, Yang F, Lin L, Zhang B, Zhang R, Jiang Y, Li C 2017 Biomed. Opt. Express 8 3449Google Scholar

    [9]

    Li X, Wang D, Ran H, Hao L, Cao Y, Ao M, Zhang N, Song J, Zhang L, Yi H, Wang Z, Li P 2018 Biochem. Biophys. Res. Commun. 502 255Google Scholar

    [10]

    Mallidi S, Watanabe K, Timerman D, Schoenfeld D, Hasan T 2015 Theranostics 5 289Google Scholar

    [11]

    Qian M, Du Y, Wang S, Li C, Jiang H, Shi W, Chen J, Wang Y, Wagner E, Huang R 2018 ACS Appl. Mater. Inter. 10 4031Google Scholar

    [12]

    Diot G, Metz S, Noske A, Liapis E, Schroeder B, Ovsepian S V, Meier R, Rummeny E, Ntziachristos V 2017 Clin. Cancer Res. 23 6912Google Scholar

    [13]

    Toi M, Asao Y, Matsumoto Y, Sekiguchi H, Yoshikawa A, Takada M, Kataoka M, Endo T, Kawaguchi-Sakita N, Kawashima M, Fakhrejahani E, Kanao S, Yamaga I, Nakayama Y, Tokiwa M, Torii M, Yagi T, Sakurai T, Togashi K, Shiina T 2017 Sci. Rep. 7 41970Google Scholar

    [14]

    Yang J-M, Favazza C, Chen R, Yao J, Cai X, Maslov K, Zhou Q, Shung K K, Wang L V 2012 Nat. Med. 18 1297Google Scholar

    [15]

    Li Y, Lin R, Liu C, Chen J, Liu H, Zheng R, Gong X, Song L 2018 J. Biophotonics 11 e201800034Google Scholar

    [16]

    Oeri M, Bost W, Senegond N, Tretbar S, Fournelle M 2017 Ultrasound Med. Biol. 43 2200Google Scholar

    [17]

    Daoudi K, van den Berg P J, Rabot O, Kohl A, Tisserand S, Brands P, Steenbergen W 2014 Opt. Express 22 26365Google Scholar

    [18]

    谢实梦, 黄林, 王雪, 迟子惠, 汤永辉, 郑铸, 蒋华北 2021 物理学报 70 100701Google Scholar

    Xie S M, Huang L, Wang L, Chi Z H, Tang Y H, Zheng Z, Jiang H B 2021 Acta Phys. Sin. 70 100701Google Scholar

    [19]

    Choi S, Kim J Y, Lim H G, Baik J W, Kim H H, Kim C 2020 Sci. Rep. 10 6544Google Scholar

    [20]

    齐伟智 2018 博士学位论文 (成都: 电子科技大学)

    Qi W Z 2018 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [21]

    Xi L, Sun J, Zhu Y, Wu L, Xie H, Jiang H 2010 Biomed. Opt. Express 1 1278Google Scholar

    [22]

    Lee C, Kim J Y, Kim C 2018 Micromachines 9 584Google Scholar

    [23]

    Yao J, Huang C H, Wang L, Yang J M, Gao L, Maslov K I, Zou J, Wang L V 2012 J. Biomed. Opt. 17 080505Google Scholar

    [24]

    Kim J Y, Lee C, Park K, Lim G, Kim C 2015 Sci. Rep. 5 7932Google Scholar

    [25]

    Kim S, Lee C, Kim J Y, Kim J, Lim G, Kim C 2016 J. Biomed. Opt. 21 106001Google Scholar

    [26]

    Kim J Y, Lee C, Lim G, Kim C 2016 Photons Plus Ultrasound: Imaging and Sensing San Francisco, 15 March 2016, p970835

    [27]

    Pu Y, Bi R, Ahn J, Kim J Y, Kim C, Olivo M, Zhao X J 2019 Photons Plus Ultrasound: Imaging and Sensing San Francisco, 27 February 2019, p1087843

    [28]

    Park K, Kim J Y, Lee C, Jeon S, Lim G, Kim C 2017 Sci. Rep. 7 13359Google Scholar

    [29]

    American Laser Institute. American National Standards for the Safe Use of Lasers ANSIZ136.1. Orlando, FL: American Laser Institute, 2014

    [30]

    Wang L V, Hu S 2012 Science 335 1458Google Scholar

    [31]

    汤永辉, 郑铸, 谢实梦, 黄林, 蒋华北 2020 物理学报 69 240701Google Scholar

    Tang Y H, Zheng Z, Xie S M, Huang L, Jiang H B 2020 Acta Phys. Sin. 69 240701Google Scholar

  • [1] 孙淑鹏, 程用志, 罗辉, 陈浮, 杨玲玲, 李享成. 基于人工表面等离激元的小型化电可调缺口带滤波器. 物理学报, 2024, 73(3): 034101. doi: 10.7498/aps.73.20231447
    [2] 张嘉禧, 李凌峰, 钟洪文, 肖嘉莹. 用于深层组织分子成像的小型化光声/超声内窥成像探头. 物理学报, 2024, 73(21): 214203. doi: 10.7498/aps.73.20241076
    [3] 杨鑫宇, 叶华朋, 李佩芸, 廖鹤麟, 袁冬, 周国富. 小型化涡旋光模式解复用器: 原理、制备及应用. 物理学报, 2023, 72(20): 204207. doi: 10.7498/aps.72.20231521
    [4] 谢实梦, 黄林, 王雪, 迟子惠, 汤永辉, 郑铸, 蒋华北. 基于镂空阵列探头的反射式光声/热声双模态组织成像. 物理学报, 2021, 70(10): 100701. doi: 10.7498/aps.70.20202012
    [5] 吴彤, 霍文麒, 黄蕴智, 王吉明, 顾晓蓉, 路元刚, 赫崇君, 刘友文. 用于内窥光学相干层析成像的小型化预标定Lissajous扫描光纤探头. 物理学报, 2021, 70(15): 150701. doi: 10.7498/aps.70.20210151
    [6] 黄梅婷, 姜银花, 陈钰琦, 李润华. 铋黄铜中微量元素的高重复频率激光剥离-火花诱导击穿光谱定量分析. 物理学报, 2021, 70(10): 104206. doi: 10.7498/aps.70.20202018
    [7] 胥守振, 黄林, 谢实梦, 迟子惠, 吴丹. 基于声学扫描振镜的超声/光声双模态成像技术. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211394
    [8] 汤永辉, 郑铸, 谢实梦, 黄林, 蒋华北. 基于多路放大器加法电路噪声抑制的热声成像技术. 物理学报, 2020, 69(24): 240701. doi: 10.7498/aps.69.20201036
    [9] 张越, 侯飞雁, 刘涛, 张晓斐, 张首刚, 董瑞芳. 基于II类周期极化铌酸锂波导的通信波段小型化频率纠缠源产生及其量子特性测量. 物理学报, 2018, 67(14): 144204. doi: 10.7498/aps.67.20180329
    [10] 赵芳婧, 高峰, 韩建新, 周驰华, 孟俊伟, 王叶兵, 郭阳, 张首刚, 常宏. 小型化锶光钟物理系统的研制. 物理学报, 2018, 67(5): 050601. doi: 10.7498/aps.67.20172584
    [11] 戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁. 太赫兹波段谐振频率可调的开口谐振环结构. 物理学报, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [12] 鲁磊, 屈绍波, 施宏宇, 张安学, 张介秋, 马华. 基于宽边耦合螺旋结构的低频小型化极化不敏感超材料吸波体. 物理学报, 2013, 62(15): 158102. doi: 10.7498/aps.62.158102
    [13] 许河秀, 王光明, 梁建刚, 彭清. 一种基于分形结构的复合左右手传输线及其在小型化功分器中应用. 物理学报, 2012, 61(7): 074101. doi: 10.7498/aps.61.074101
    [14] 徐新河, 肖绍球, 甘月红, 付崇芳, 王秉中. 交指电容加载的周期性对称负磁导率人工材料研究. 物理学报, 2012, 61(12): 124103. doi: 10.7498/aps.61.124103
    [15] 刘亚红, 刘辉, 赵晓鹏. 基于小型化结构的各向同性负磁导率材料与左手材料. 物理学报, 2012, 61(8): 084103. doi: 10.7498/aps.61.084103
    [16] 唐明春, 肖绍球, 邓天伟, 柏艳英, 官剑, 王秉中. 小型化电谐振人工特异材料研究. 物理学报, 2010, 59(7): 4715-4719. doi: 10.7498/aps.59.4715
    [17] 武明峰, 孟繁义, 傅佳辉, 吴 群, 吴 健. 新型小型化的平面左手介质微带线及其后向波特性验证. 物理学报, 2008, 57(2): 822-826. doi: 10.7498/aps.57.822
    [18] 武明峰, 孟繁义, 吴 群, 吴 健. 基于左手介质后向波特性的微带天线小型化研究. 物理学报, 2006, 55(12): 6368-6373. doi: 10.7498/aps.55.6368
    [19] 杨辉, 邱阳, 腾浩, 张军, 苍宇, 吕铁铮, 王兆华, 王鸿飞, 魏志义, 张杰. 4.5MW小型化全固态腔倒空飞秒掺钛蓝宝石激光器. 物理学报, 2001, 50(10): 1930-1934. doi: 10.7498/aps.50.1930
    [20] 张淑仪, 俞超, 苗永智, 唐正言, 高敦堂. 扫描光声显微镜. 物理学报, 1982, 31(5): 704-708. doi: 10.7498/aps.31.704
计量
  • 文章访问数:  6457
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-28
  • 修回日期:  2021-10-13
  • 上网日期:  2022-02-24
  • 刊出日期:  2022-03-05

/

返回文章
返回