搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于镂空阵列探头的反射式光声/热声双模态组织成像

谢实梦 黄林 王雪 迟子惠 汤永辉 郑铸 蒋华北

引用本文:
Citation:

基于镂空阵列探头的反射式光声/热声双模态组织成像

谢实梦, 黄林, 王雪, 迟子惠, 汤永辉, 郑铸, 蒋华北

Reflection mode photoacoustic/thermoacoustic dual modality imaging based on hollow concave array

Xie Shi-Meng, Huang Lin, Wang Xue, Chi Zi-Hui, Tang Yong-Hui, Zheng Zhu, Jiang Hua-Bei
PDF
HTML
导出引用
  • 光声和热声成像技术除激发源不同外, 可共用一套数据采集和处理系统, 具有天然的融合优势. 本文提出了一种基于镂空阵列的反射式光声/热声双模态成像技术, 该技术利用光纤与天线, 通过镂空阵列的开孔进行光声/热声信号激发, 使得激发光、微波和接收超声信号共轴, 构成明场光声/热声双模态成像模式. 通过对探头镂空部分晶元相位和幅值的补偿校准, 成功实现了3 mm直径塑料管、人体手臂、手背和脚背的双模态成像. 实验结果表明: 系统空间分辨率为0.33 mm, 双模态成像技术可同时提供组织的光学和微波吸收分布, 有助于肿瘤、糖尿病足等疾病的精准检测, 具有极广泛的临床应用前景.
    Photoacoustic (PA) and thermoacoustic (TA) imaging can share a set of data acquisition and data processing system, in addition to different excitation sources. In this paper, a reflection mode PA/TA dual modality imaging based on a hollow concave array is proposed. The PA/TA signals are excited through the holes in the hollow array by using optical fiber and dipole antenna, respectively. The excited light, microwave and received ultrasonic signals are coaxial, forming a PA/TA dual modality imaging mode. Through the compensation and calibration of the transducer crystal phase and amplitude of the hollow part of the array, a 3-mm-diameter plastic tube filled with 0.9 wt.% salt water, safflower oil, human arm, back of hand and instep are successfully imaged, separately. These experimental results show that the spatial resolution of the PA/TA dual modality imaging system is 0.33 mm, and this technology has a potential to provide the optical and microwave absorption distribution of tissues at the same time by using the same hollow concave array, which is helpful in accurately detecting tumor, diabetic foot and other diseases, and has a wide range of clinical application prospects.
      通信作者: 黄林, lhuang@uestc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61701076, 82071940, 62001075)和四川省科技计划项目重点研发计划(批准号: 2019YFS0119, 2019YFS0127) 资助的课题
      Corresponding author: Huang Lin, lhuang@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61701076, 82071940, 62001075) and the Key Research and Development Program of Science and Technology Planning Project of Sichuan Province, China (Grant Nos. 2019YFS0119, 2019YFS0127)
    [1]

    Shi J, Wong T T W, He Y, Li L, Wang L V 2019 Nat. Photonics 13 609Google Scholar

    [2]

    Wong T T W, Zhang R, Zhang C, Hsu H C, Maslov K, Wang L, Shi J, Chen R, Shung K K, Zhou Q F, Wang L V 2017 Nat. Commun. 8 1386Google Scholar

    [3]

    Wang Y C, Liang G R, Liu F, Chen Q, Xi L 2020 IEEE. Trans. Biomed. Eng. 99 1

    [4]

    Gottschalk S, Degtyaruk O, Mc Larney B, Rebling J, Hutter M A, Deán-Ben X L, Shoham S, Razansky D 2019 Nat. Biomed. Eng. 3 392Google Scholar

    [5]

    Merčep E, Herraiz J L, Deán-Ben X L, Razansky D 2019 Ligh-Sci. Appl. 8 1Google Scholar

    [6]

    Jiang H B 2015 Photoacoustic Tomography (Boca Raton, FL: CRC Press) pp1−50

    [7]

    Ivankovic I, Merčep, Elena, Schmedt, C G, Deán-Ben X L, Razansky D 2019 Radiology 291 45Google Scholar

    [8]

    Attia ABE, Balasundaram G, Moothanchery M, Dinish US, Bi R, Ntziachristos V, Olivo M 2019 Photoacoustics 16 100144Google Scholar

    [9]

    Kruger RA, Kopecky KK, Aisen AM, Reinecke DR, Kruger GA, Kiser WL Jr 1999 Radiology 211 275Google Scholar

    [10]

    Wang X, Bauer D R, Witte R, Xin H 2012 IEEE. Trans. Biomed. Eng. 59 2782Google Scholar

    [11]

    Huang L, Yao L, Liu L, Rong J, Jiang H B 2012 Appl. Phys. Lett. 101 244106Google Scholar

    [12]

    Qin H, Cui Y S, Wu Z J, Chen Q, Xing D 2020 IEEE. Photonics. J. 99 1

    [13]

    Huang L, Li T, Jiang H 2017 Med. Phys. 44 1494Google Scholar

    [14]

    Chi Z H, Zhao Y, Yang J G, Li TT, Jiang H B 2018 IEEE. Trans. Biomed. Eng. 66 1598

    [15]

    Zheng Z, Huang L, Jiang HB 2018 Appl. Phys. Lett. 113 253702Google Scholar

    [16]

    Eckhart AT, Balmer RT, See WA, et al. 2011 IEEE Trans. Biomed. Eng. 58 2238Google Scholar

    [17]

    Patch S, Hull D, See W, Hanson G W 2016 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63 245Google Scholar

    [18]

    Ku G, Fornage B D, Jin X, Xu M H, Hunt K K, Wang L V 2005 Technol. Cancer Res. T. 4 559Google Scholar

    [19]

    Pramanik M, Ku G, Li C H, Wang L V 2008 Med. Phys. 35 2218Google Scholar

    [20]

    Ke H, Erpelding T N, Jankovic L, Liu C, Wang L V 2012 J. Biomed. Opt. 15 056010

    [21]

    Merčep E, Deán-Ben X L, Razansky D 2017 IEEE. Trans. Med. Imaging. 36 2129Google Scholar

    [22]

    Reinecke D R, Kruger R A, Lam R B, Delrio S P 2010 Proc. SPIE Int. Soc. Opt. Eng. 7564 489

    [23]

    Li M C, Liu C B, Gong X J, Zheng R Q, Bai Y Y, Xing M Y, Du X M, Liu X Y, Zeng J, Lin R Q, Zhou H C, Wang S J, Lu G M, Zhu W, Fang C H, Song L 2018 Biomed. Opt. Express 9 1408Google Scholar

    [24]

    American Laser Institute. American National Standards for the Safe Use of Lasers ANSIZ136.1. Orlando, FL: American Laser Institute, 2014

    [25]

    Huang L, Ge S, Zheng Z, Jiang H B 2018 Med. Phys. 46 851

    [26]

    IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields 3 kHz to 300 GHz, IEEE Standard C95.1; 1999

    [27]

    Hoelen C G A, de Mul F F M 2001 Appl. Opt. 39 5872

    [28]

    Jeon S, Park E Y, Choi W, Managuli R, Kim C 2019 Photoacoustics 15 100136Google Scholar

    [29]

    Zhang Y P, Li E, Zhang J, Yu C Y, Zheng H, Guo G F 2018 Rev. Sci. Instrum. 89 024701Google Scholar

    [30]

    Wang X, Huang L, Chi Z H, Jiang H B. 2021 Phy. Med. Biol. (Under Review)

    [31]

    Choi W, Park E Y, Jeon S, Kim C 2018 Biomed. Eng. Lett. 8 1Google Scholar

    [32]

    Ji Z, Ding W Z, Ye F H, Lou C G 2016 Ultrason. Imaging 38 276Google Scholar

    [33]

    Chi Z H, Liang X, Wang X, Huang L, Jiang H B 2020 IEEE J. Electromagnet. RF Microwaves Med. Biol. 99 1

    [34]

    Yang J G, Zhang G, Wu M, Shang Q Q, Huang L, Jiang H B 2019 J. Biophotonics 12 e201900004

  • 图 1  (a)为反射式光声/热声双模态成像系统框图; (b), (c)分别为反射式光声和热声成像探头接口实物图; (d), (e)分别为镂空探头俯视和侧视实物图

    Fig. 1.  (a) Schematic of the photoacoustic (PA)/thermoacoustic (TA) dual modality imaging system; (b), (c) photograph of the PA and TA imaging system, respectively; (d), (e) Top view and side view of the hollow concave array, respectively.

    图 2  镂空阵列探头校准结果图 (a) 第47和48晶元接收到的热声信号波形; (b) 第49晶元所接收热声信号校准前和校准后的波形图, 以及与第48晶元热声信号波形图; (c), (d) 分别为校准前和校准后的热声图像

    Fig. 2.  The calibration results of hollow transducer array: (a) TA signal received by the 47 th and 48 th elements; (b) the TA signal before and after calibration of the 49 th element, and the TA signal of the 48 th element; (c), (d) are the TA images before and after calibration, respectively. TAM: Thermoacoustic Amplitude.

    图 3  双模态成像性能验证实验 (a), (b) 分别为待成像物体示意图和实物图; (c), (d) 分别为热声图像和680 nm激发波长得到的光声图像; (e)融合后的热声/光声双模态图像

    Fig. 3.  (a), (b) Schematic and photograph of the target, respectively; (c), (d) TA and PA images obtained at 680 nm, respectively; (e) the fused TA/PA image. PAM:Photoacoustic Amplitude

    图 4  空间分辨率实验 (a) 两根直径66 μm铜丝的热声成像结果; (b) 沿(a)中红色虚线的热声图像一维轮廓分布

    Fig. 4.  TAI of two copper wires for system spatial resolution evaluation: (a) Recovered TA image; (b) recovered microwave absorption profile along the red dashed line shown in (a). TAM: Thermoacoustic Amplitude.

    图 5  正常人手臂双模态成像, 左侧为待成像平面示意图, A和B分别为自愿者1和2待成像手臂平面示意图; (a)−(d)和(e)−(h)依次为为自愿者1和2手臂的热声图像, 680, 720, 800 nm激发光声图像

    Fig. 5.  The picture is the schematic of the opisthenar to be imaged, A and B are the detection plan of volunteers 1 and 2, respectively. (a)−(d) and (e)−(f) are TA image, 680 nm PA image, 720 nm PA image and 800 nm PA image of volunteers 1 and 2, respectively. TAM: Thermoacoustic Amplitude, PAM: Photoacoustic Amplitude.

    图 6  正常人手背双模态成像 (a) 待成像平面示意图; (b) 对应层面MRI图; (c)−(f) 依次为手背的热声图像, 680, 720和800 nm激发光声图像

    Fig. 6.  (a) Schematic diagram of the plane to be imaged; (b) the corresponding MRI image; (c)−(f) are TA image, 680 nm PA image, 720 nm PA image and 800 nm image of hand, respectively. TAM: Thermoacoustic Amplitude, PAM: Photoacoustic Amplitude.

    图 7  正常人脚背双模态成像 (a), (b) 待成像平面彩色多普勒超声图; (c)成像层面示意图; (d)−(g) 依次为脚背的热声图像, 680, 720和800 nm激发光声图像

    Fig. 7.  (a), (b) The color Doppler ultrasound images; (c) the schematic of imaging plane; (d)−(g) TA image, 680 nm PA image, 720 nm PA image and 800 nm image of instep, respectively. TAM: Thermoacoustic Amplitude, PAM: Photoacoustic Amplitude.

  • [1]

    Shi J, Wong T T W, He Y, Li L, Wang L V 2019 Nat. Photonics 13 609Google Scholar

    [2]

    Wong T T W, Zhang R, Zhang C, Hsu H C, Maslov K, Wang L, Shi J, Chen R, Shung K K, Zhou Q F, Wang L V 2017 Nat. Commun. 8 1386Google Scholar

    [3]

    Wang Y C, Liang G R, Liu F, Chen Q, Xi L 2020 IEEE. Trans. Biomed. Eng. 99 1

    [4]

    Gottschalk S, Degtyaruk O, Mc Larney B, Rebling J, Hutter M A, Deán-Ben X L, Shoham S, Razansky D 2019 Nat. Biomed. Eng. 3 392Google Scholar

    [5]

    Merčep E, Herraiz J L, Deán-Ben X L, Razansky D 2019 Ligh-Sci. Appl. 8 1Google Scholar

    [6]

    Jiang H B 2015 Photoacoustic Tomography (Boca Raton, FL: CRC Press) pp1−50

    [7]

    Ivankovic I, Merčep, Elena, Schmedt, C G, Deán-Ben X L, Razansky D 2019 Radiology 291 45Google Scholar

    [8]

    Attia ABE, Balasundaram G, Moothanchery M, Dinish US, Bi R, Ntziachristos V, Olivo M 2019 Photoacoustics 16 100144Google Scholar

    [9]

    Kruger RA, Kopecky KK, Aisen AM, Reinecke DR, Kruger GA, Kiser WL Jr 1999 Radiology 211 275Google Scholar

    [10]

    Wang X, Bauer D R, Witte R, Xin H 2012 IEEE. Trans. Biomed. Eng. 59 2782Google Scholar

    [11]

    Huang L, Yao L, Liu L, Rong J, Jiang H B 2012 Appl. Phys. Lett. 101 244106Google Scholar

    [12]

    Qin H, Cui Y S, Wu Z J, Chen Q, Xing D 2020 IEEE. Photonics. J. 99 1

    [13]

    Huang L, Li T, Jiang H 2017 Med. Phys. 44 1494Google Scholar

    [14]

    Chi Z H, Zhao Y, Yang J G, Li TT, Jiang H B 2018 IEEE. Trans. Biomed. Eng. 66 1598

    [15]

    Zheng Z, Huang L, Jiang HB 2018 Appl. Phys. Lett. 113 253702Google Scholar

    [16]

    Eckhart AT, Balmer RT, See WA, et al. 2011 IEEE Trans. Biomed. Eng. 58 2238Google Scholar

    [17]

    Patch S, Hull D, See W, Hanson G W 2016 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63 245Google Scholar

    [18]

    Ku G, Fornage B D, Jin X, Xu M H, Hunt K K, Wang L V 2005 Technol. Cancer Res. T. 4 559Google Scholar

    [19]

    Pramanik M, Ku G, Li C H, Wang L V 2008 Med. Phys. 35 2218Google Scholar

    [20]

    Ke H, Erpelding T N, Jankovic L, Liu C, Wang L V 2012 J. Biomed. Opt. 15 056010

    [21]

    Merčep E, Deán-Ben X L, Razansky D 2017 IEEE. Trans. Med. Imaging. 36 2129Google Scholar

    [22]

    Reinecke D R, Kruger R A, Lam R B, Delrio S P 2010 Proc. SPIE Int. Soc. Opt. Eng. 7564 489

    [23]

    Li M C, Liu C B, Gong X J, Zheng R Q, Bai Y Y, Xing M Y, Du X M, Liu X Y, Zeng J, Lin R Q, Zhou H C, Wang S J, Lu G M, Zhu W, Fang C H, Song L 2018 Biomed. Opt. Express 9 1408Google Scholar

    [24]

    American Laser Institute. American National Standards for the Safe Use of Lasers ANSIZ136.1. Orlando, FL: American Laser Institute, 2014

    [25]

    Huang L, Ge S, Zheng Z, Jiang H B 2018 Med. Phys. 46 851

    [26]

    IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields 3 kHz to 300 GHz, IEEE Standard C95.1; 1999

    [27]

    Hoelen C G A, de Mul F F M 2001 Appl. Opt. 39 5872

    [28]

    Jeon S, Park E Y, Choi W, Managuli R, Kim C 2019 Photoacoustics 15 100136Google Scholar

    [29]

    Zhang Y P, Li E, Zhang J, Yu C Y, Zheng H, Guo G F 2018 Rev. Sci. Instrum. 89 024701Google Scholar

    [30]

    Wang X, Huang L, Chi Z H, Jiang H B. 2021 Phy. Med. Biol. (Under Review)

    [31]

    Choi W, Park E Y, Jeon S, Kim C 2018 Biomed. Eng. Lett. 8 1Google Scholar

    [32]

    Ji Z, Ding W Z, Ye F H, Lou C G 2016 Ultrason. Imaging 38 276Google Scholar

    [33]

    Chi Z H, Liang X, Wang X, Huang L, Jiang H B 2020 IEEE J. Electromagnet. RF Microwaves Med. Biol. 99 1

    [34]

    Yang J G, Zhang G, Wu M, Shang Q Q, Huang L, Jiang H B 2019 J. Biophotonics 12 e201900004

  • [1] 何霄, 肖小舟, 何滨, 薛平, 肖嘉莹. 基于光声泵浦成像的氧分压测量定量分析. 物理学报, 2023, 72(21): 218101. doi: 10.7498/aps.72.20231041
    [2] 刘劼, 陈伟, 杨秋琳, 穆根, 高昊, 申滔, 杨思华, 张振辉. 偏振光声成像技术的研究与发展. 物理学报, 2023, 72(20): 204202. doi: 10.7498/aps.72.20230900
    [3] 王雨, 张慧敏, 覃欢. 生物医学微波热声成像. 物理学报, 2023, 72(20): 204301. doi: 10.7498/aps.72.20230732
    [4] 胥守振, 谢实梦, 吴丹, 迟子惠, 黄林. 基于声学扫描振镜的超声/光声双模态成像技术. 物理学报, 2022, 71(5): 050701. doi: 10.7498/aps.71.20211394
    [5] 胥守振, 黄林, 谢实梦, 迟子惠, 吴丹. 基于声学扫描振镜的超声/光声双模态成像技术. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211394
    [6] 汤永辉, 郑铸, 谢实梦, 黄林, 蒋华北. 基于多路放大器加法电路噪声抑制的热声成像技术. 物理学报, 2020, 69(24): 240701. doi: 10.7498/aps.69.20201036
    [7] 刘宸, 孙宏祥, 袁寿其, 夏建平, 钱姣. 基于热声相控阵列的声聚焦效应. 物理学报, 2017, 66(15): 154302. doi: 10.7498/aps.66.154302
    [8] 殷杰, 陶超, 刘晓峻. 多参量光声成像及其在生物医学领域的应用. 物理学报, 2015, 64(9): 098102. doi: 10.7498/aps.64.098102
    [9] 毕欣, 黄林, 杜劲松, 齐伟智, 高扬, 荣健, 蒋华北. 脉冲微波辐射场空间分布的热声成像研究. 物理学报, 2015, 64(1): 014301. doi: 10.7498/aps.64.014301
    [10] 张宇, 唐志列, 吴泳波, 束刚. 基于声透镜的三维光声成像技术. 物理学报, 2015, 64(24): 240701. doi: 10.7498/aps.64.240701
    [11] 曾志平, 谢文明, 张建英, 李莉, 陈树强, 李志芳, 李晖. 基于聚焦光声层析技术的甲状腺离体组织成像. 物理学报, 2012, 61(9): 097801. doi: 10.7498/aps.61.097801
    [12] 简小华, 崔崤峣, 向永嘉, 韩志乐. 自适应多光谱光声成像技术研究. 物理学报, 2012, 61(21): 217801. doi: 10.7498/aps.61.217801
    [13] 刘广东, 张业荣. 乳腺癌检测的三维微波热声成像技术. 物理学报, 2011, 60(7): 074303. doi: 10.7498/aps.60.074303
    [14] 吴丹, 陶超, 刘晓峻. 有限方位扫描的光声断层成像分辨率研究. 物理学报, 2010, 59(8): 5845-5850. doi: 10.7498/aps.59.5845
    [15] 向良忠, 邢达, 郭华, 杨思华. 高分辨率快速数字化光声CT乳腺肿瘤成像. 物理学报, 2009, 58(7): 4610-4617. doi: 10.7498/aps.58.4610
    [16] 杨思华, 阴广志. 利用近红外光激发的光声血管造影成像. 物理学报, 2009, 58(7): 4760-4765. doi: 10.7498/aps.58.4760
    [17] 赵贵敏, 陆明珠, 万明习, 方莉. 高分辨率扇形阵列超声激发振动声成像研究. 物理学报, 2009, 58(9): 6596-6603. doi: 10.7498/aps.58.6596
    [18] 徐晓辉, 李 晖. 基于长焦区聚焦换能器的扫描光声乳腺成像技术. 物理学报, 2008, 57(7): 4623-4628. doi: 10.7498/aps.57.4623
    [19] 向良忠, 邢 达, 谷怀民, 杨迪武, 杨思华, 曾吕明. 改进的同步迭代算法在光声血管成像中的应用. 物理学报, 2007, 56(7): 3911-3916. doi: 10.7498/aps.56.3911
    [20] 陈湛旭, 唐志列, 万 巍, 何永恒. 基于声透镜成像系统的光声层析成像. 物理学报, 2006, 55(8): 4365-4370. doi: 10.7498/aps.55.4365
计量
  • 文章访问数:  4354
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-30
  • 修回日期:  2021-01-06
  • 上网日期:  2021-05-13
  • 刊出日期:  2021-05-20

/

返回文章
返回