搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种不确定性捆扎线束电磁耦合效应的广义等效建模方法

肖培 李佳维 贺佳港 李锦新 刘柱 李高升

引用本文:
Citation:

一种不确定性捆扎线束电磁耦合效应的广义等效建模方法

肖培, 李佳维, 贺佳港, 李锦新, 刘柱, 李高升

A generalized simplified modeling method for electromagnetic coupling effects of uncertainty strapping cable harness

Xiao Pei, Li Jia-Wei, He Jia-Gang, Li Jin-Xin, Liu Zhu, Li Gao-Sheng
PDF
HTML
导出引用
  • 线束在实际布线过程中存在空间布局特性, 其芯线数目大、空间任意弯曲以及位置不确定等特点给线束耦合干扰的建模与分析带来了挑战. 不确定性全线束模型耦合干扰的数值仿真对计算能力提出了更高要求, 甚至无法进行有效计算. 因此, 本文提出了不确定性捆扎弧形线束电磁耦合效应的广义简化建模方法, 考虑了捆扎线束内导线相对位置的不确定性. 基于高斯分布和样条插值方法, 建立了不确定性捆扎线束内导线的位置, 根据多导体传输线理论确立了等效线束的几何截面结构参数, 通过圆弧和正弦捆扎线束数值算例验证了本文方法的有效性.
    The cable harness provides a main gateway for electromagnetic interference(EMI) in electromechanical system. The unreasonable electromagnetic compatibility (EMC) design of cable harness will produce EMI to other on-board electronic equipment, bringing great safety risks to the system. Theoretical research and engineering practice indicate that most of the electromechanical systems cannot satisfy EMC standards, which can be attributed to the EMI generated by cables. As for the eletromagnetic(EM) illumination analysis, reliably and efficiently generating a full numerical model of cable harness is becoming more prominent for the EMC designers. Therefore, it is necessary to develop a more effective method to solve the modeling problem of cable harness. In the practical application, the cable harness has the characteristics of spatial layout, and its characteristics such as “large number of core wires”, “arbitrary curvature of space” and “randomness of wiring” bring challenges to the modeling of EM coupling to cable harness. The numerical simulation of the whole cable harness model requires severe conditions for computational resource and even makes the EM coupling analysis impossible. Thus, considering the uncertainty of wire position, this paper proposes a generalized simplified modeling method for the EM coupling effect of uncertainty strapping cable harness. Firstly, the Gaussian distribution and spline interpolation are used to determine the location of the core conductors in the random bundling. Then, the distribution parameters of the cable harness at different positions are established by using the transposition relationship between the subsegments of the wires. Finally, the effectiveness of the proposed method is verified by numerical examples of the arc-shaped and sine-shaped harness. In conclusion, this paper proposes a generalized simplification technique to model the EM illumination on cable harness with uncertainty wiring factors. By grouping the conductors together, the required computation time is markedly reduced and the complexity of modeling the completely cable harness is significantly simplified within a good accuracy. The proposed method provides a way of solving the modeling problem caused by “uncertainty strapping” of the complex wiring harnesses in electromechanical systems.
      通信作者: 李高升, gaosheng7070@vip.163.com
    • 基金项目: 国家自然科学基金(批准号: 51675086)和中国博士后科学基金(批准号: 2020M672482)资助的课题
      Corresponding author: Li Gao-Sheng, gaosheng7070@vip.163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51675086) and the China Postdoctoral Science Foundation (Grant No. 2020M672482)
    [1]

    任丹, 杜平安, 聂宝林, 曹钟, 刘文奎 2014 物理学报 63 120701Google Scholar

    Ren D, Du P A, Nie B L, Cao Z, Liu W Q 2014 Acta Phys. Sin. 63 120701Google Scholar

    [2]

    曹钟, 杜平安, 聂宝林, 任丹, 张其道 2014 物理学报 63 124102Google Scholar

    Cao Z, Du P A, Nie B L, Ren D, Zhang Q D 2014 Acta Phys. Sin. 63 124102Google Scholar

    [3]

    叶志红, 张杰, 周健健, 苟丹 2020 物理学报 69 060701Google Scholar

    Ye Z H, Zhang J, Zhou J J, Gou D 2020 Acta Phys. Sin. 69 060701Google Scholar

    [4]

    吴振军, 王丽芳, 廖承林 2009 物理学报 59 6146Google Scholar

    Wu Z J, Wang L F, Liao C L 2009 Acta Phys. Sin. 59 6146Google Scholar

    [5]

    孙亚秀, 卓庆坤, 姜庆辉, 李千 2015 物理学报 64 044102Google Scholar

    Sun Y X, Zhuo Q K, Jiang Q H, Li Q 2015 Acta Phys. Sin. 64 044102Google Scholar

    [6]

    王海龙, 吴群, 孟繁义, 李乐伟 2007 物理学报 56 2608Google Scholar

    Wang H L, Wu Q, Meng F Y, Li Y W 2007 Acta Phys. Sin. 56 2608Google Scholar

    [7]

    Andrieu G, Kone L, Bocquet F 2008 IEEE Trans. Electromagn. Compat. 50 175Google Scholar

    [8]

    Andrieu G, Reineix A, Bunlon M 2009 IEEE Trans. Electromagn. Compat. 51 108Google Scholar

    [9]

    Andrieu G, Reineix A 2013 IEEE Trans. Electromagn. Compat. 55 798Google Scholar

    [10]

    Schetelig B, Keghie J, Kanyou R 2010 Adv. Radio Sci. 8 211Google Scholar

    [11]

    Li Z, Shao Z J, Ding J 2011 IEEE Trans. Electromagn. Compat. 53 1040Google Scholar

    [12]

    Li Z, Liu L L, Ding J 2012 IEEE Trans. Electromagn. Compat. 54 940Google Scholar

    [13]

    Li Z, Liu L L, Yan J 2013 IEEE Trans. Electromagn. Compat. 55 975Google Scholar

    [14]

    汪泉弟, 郑亚利, 刘青松, 曾铉, 俞集辉 2012 电工技术学报 7 160

    Wang Q D, Zheng Y L, Liu Q S, Zeng X, Yu J H 2012 Transactions of China Electrotechnical Society 7 160

    [15]

    高印寒, 安占扬, 王举贤 2015 吉林大学学报 45 946

    Gao Y H, An Z Y, Wang J X 2015 J. Jilin Univ. 45 946

    [16]

    王天皓, 高印寒, 高乐 2017 吉林大学学报 47 392

    Wang T H, Gao Y H, Gao L 2017 J. Jilin Univ. 47 392

    [17]

    Paul C R 2008 Analysis of Multiconductor Transmission Lines (New Jersey: John Wiley & Sons)

    [18]

    高印寒, 王瑞宝, 马玉刚, 王莹莹, 杨开宇 2011 吉林大学学报 19 1088

    Gao Y H, Wang R Z, Ma Y G, Wang Y Y, Yang K Y 2011 J. Jilin Univ. 19 1088

    [19]

    Sun S, Liu G, Drewniak J L 2007 IEEE Trans. Electromagn. Compat. 49 708Google Scholar

    [20]

    Duffy A P, Martin A J M, Orlandi A, Antonini G 2006 IEEE Trans. Electromagn. Compat. 48 449Google Scholar

    [21]

    Orlandi A, Duffy A P, Archambeault B, Antonini G 2006 IEEE Trans. Electromagn. Compat. 48 460Google Scholar

  • 图 1  控制器信号线缆束

    Fig. 1.  Controller signal cable bundle..

    图 2  设备互连线束示意图 (a)弧形捆扎线束; (b)线束电路连接示意图

    Fig. 2.  Schematic diagram of equipment interconnection wiring cable harness: (a) Arc-shaped binding cable harness; (b) circuit connection diagram.

    图 3  不确定性捆扎线束简化建模

    Fig. 3.  Simplification modeling of uncertainty binding cable harness.

    图 4  双导体传输线几何截面结构

    Fig. 4.  Cross-sectional geometry of double conductors.

    图 5  不确定性线束建模步骤 (a)线束始端的确立; (b)基于样条插值法的线束位置; (c)分段级联

    Fig. 5.  Modeling steps for uncertainty cable harness: (a) Determination of the beginning end; (b) location of the cable harness based on spline interpolation; (c) sectional cascade.

    图 6  线束内导线之间的换位示意图

    Fig. 6.  A schematic diagram of transposition between conductors in the cable harness.

    图 7  共模负载的确立

    Fig. 7.  Determination of the common mode load impedance.

    图 8  平面波照射下21根圆弧捆扎线束模型示意图

    Fig. 8.  Schematic diagram of a 21-conductor circular arc-shaped binding cable harness model illuminated by the plane wave.

    图 9  圆弧不确定性捆扎线束简化前后负载耦合电流对比 (a)近端; (b)远端

    Fig. 9.  Comparison of the load coupling current on the circular arc-shaped binding cable harness: (a) Near end; (b) far end.

    图 10  平面波照射下21根正弦弧形不确定性捆扎线束模型

    Fig. 10.  Schematic diagram of a 21-conductor sine arc-shaped binding cable harness model illuminated by the plane wave.

    图 11  正弦不确定性捆扎线束简化前后负载耦合电流对比 (a)近端; (b)远端

    Fig. 11.  Comparison of the load coupling current on the sine arc-shaped binding cable harness: (a) Near end; (b) far end.

    表 1  直角坐标系中21-线束模型近端位置(单位: mm)

    Table 1.  Coordinates of each conductor near end of the 21-conductor cable harness (unit: mm).

    导线编号1234567
    坐标x, y–8, 4–8, 0–8, –4–4, 8–4, 4–4, 0–4, 4
    导线编号891011121314
    坐标x, y–4, –80, 40, 40, 00, –40, –84, 8
    导线编号15161718192021
    坐标x, y4, 44, 04, –44, –88, 48, 08, –4
    下载: 导出CSV

    表 2  本文方法的FSV评价结果

    Table 2.  The FSV evaluation results of the proposed method.

    线束终端FSV
    ADMtotFDMtotGDMtot
    圆弧线束近端0.265/good0.181/very good0.317/good
    远端0.289/good0.200/very good0.345/good
    正弦线束近端0.313/good0.172/very good0.376/good
    远端0.290/good0.157/very good0.350/good
    下载: 导出CSV

    表 3  全模型和简化模型仿真时间分析

    Table 3.  Analysis time of the simplified and complete model.

    模型圆弧全
    模型
    圆弧简化
    模型
    正弦全
    模型
    正弦简化
    模型
    计算时间/s32224202919336
    下载: 导出CSV
  • [1]

    任丹, 杜平安, 聂宝林, 曹钟, 刘文奎 2014 物理学报 63 120701Google Scholar

    Ren D, Du P A, Nie B L, Cao Z, Liu W Q 2014 Acta Phys. Sin. 63 120701Google Scholar

    [2]

    曹钟, 杜平安, 聂宝林, 任丹, 张其道 2014 物理学报 63 124102Google Scholar

    Cao Z, Du P A, Nie B L, Ren D, Zhang Q D 2014 Acta Phys. Sin. 63 124102Google Scholar

    [3]

    叶志红, 张杰, 周健健, 苟丹 2020 物理学报 69 060701Google Scholar

    Ye Z H, Zhang J, Zhou J J, Gou D 2020 Acta Phys. Sin. 69 060701Google Scholar

    [4]

    吴振军, 王丽芳, 廖承林 2009 物理学报 59 6146Google Scholar

    Wu Z J, Wang L F, Liao C L 2009 Acta Phys. Sin. 59 6146Google Scholar

    [5]

    孙亚秀, 卓庆坤, 姜庆辉, 李千 2015 物理学报 64 044102Google Scholar

    Sun Y X, Zhuo Q K, Jiang Q H, Li Q 2015 Acta Phys. Sin. 64 044102Google Scholar

    [6]

    王海龙, 吴群, 孟繁义, 李乐伟 2007 物理学报 56 2608Google Scholar

    Wang H L, Wu Q, Meng F Y, Li Y W 2007 Acta Phys. Sin. 56 2608Google Scholar

    [7]

    Andrieu G, Kone L, Bocquet F 2008 IEEE Trans. Electromagn. Compat. 50 175Google Scholar

    [8]

    Andrieu G, Reineix A, Bunlon M 2009 IEEE Trans. Electromagn. Compat. 51 108Google Scholar

    [9]

    Andrieu G, Reineix A 2013 IEEE Trans. Electromagn. Compat. 55 798Google Scholar

    [10]

    Schetelig B, Keghie J, Kanyou R 2010 Adv. Radio Sci. 8 211Google Scholar

    [11]

    Li Z, Shao Z J, Ding J 2011 IEEE Trans. Electromagn. Compat. 53 1040Google Scholar

    [12]

    Li Z, Liu L L, Ding J 2012 IEEE Trans. Electromagn. Compat. 54 940Google Scholar

    [13]

    Li Z, Liu L L, Yan J 2013 IEEE Trans. Electromagn. Compat. 55 975Google Scholar

    [14]

    汪泉弟, 郑亚利, 刘青松, 曾铉, 俞集辉 2012 电工技术学报 7 160

    Wang Q D, Zheng Y L, Liu Q S, Zeng X, Yu J H 2012 Transactions of China Electrotechnical Society 7 160

    [15]

    高印寒, 安占扬, 王举贤 2015 吉林大学学报 45 946

    Gao Y H, An Z Y, Wang J X 2015 J. Jilin Univ. 45 946

    [16]

    王天皓, 高印寒, 高乐 2017 吉林大学学报 47 392

    Wang T H, Gao Y H, Gao L 2017 J. Jilin Univ. 47 392

    [17]

    Paul C R 2008 Analysis of Multiconductor Transmission Lines (New Jersey: John Wiley & Sons)

    [18]

    高印寒, 王瑞宝, 马玉刚, 王莹莹, 杨开宇 2011 吉林大学学报 19 1088

    Gao Y H, Wang R Z, Ma Y G, Wang Y Y, Yang K Y 2011 J. Jilin Univ. 19 1088

    [19]

    Sun S, Liu G, Drewniak J L 2007 IEEE Trans. Electromagn. Compat. 49 708Google Scholar

    [20]

    Duffy A P, Martin A J M, Orlandi A, Antonini G 2006 IEEE Trans. Electromagn. Compat. 48 449Google Scholar

    [21]

    Orlandi A, Duffy A P, Archambeault B, Antonini G 2006 IEEE Trans. Electromagn. Compat. 48 460Google Scholar

  • [1] 庄杰, 韩瑞, 季振宇, 石富坤. 量化电导率模型参数多样性导致的脉冲电场消融预测的不确定性. 物理学报, 2023, 72(14): 147701. doi: 10.7498/aps.72.20230203
    [2] 郭唯琛, 艾保全, 贺亮. 机器学习回归不确定性揭示自驱动活性粒子的群集相变. 物理学报, 2023, 72(20): 200701. doi: 10.7498/aps.72.20230896
    [3] 张诗琪, 杨化通. 不确定性的定量描述和熵不确定关系. 物理学报, 2023, 72(11): 110303. doi: 10.7498/aps.72.20222443
    [4] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 更正: 光学反馈线性腔衰荡光谱技术不确定性[物理学报 2022, 71(12): 124201]. 物理学报, 2022, 71(15): 159901. doi: 10.7498/aps.71.159901
    [5] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 光学反馈线性腔衰荡光谱技术不确定性. 物理学报, 2022, 71(12): 124201. doi: 10.7498/aps.70.20220186
    [6] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 光学反馈线性腔衰荡光谱技术不确定性研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220186
    [7] 张少东, 孙超, 谢磊, 刘雄厚, 王宣. 浅海波导环境不确定性对声源功率估计的影响. 物理学报, 2021, 70(24): 244301. doi: 10.7498/aps.70.20210852
    [8] 叶志红, 张杰, 周健健, 苟丹. 有耗介质层上多导体传输线的电磁耦合时域分析方法. 物理学报, 2020, 69(6): 060701. doi: 10.7498/aps.69.20191214
    [9] 颜冰, 黄思训, 冯径. 大气边界层模式中随机参数的反演与不确定性分析. 物理学报, 2018, 67(19): 199201. doi: 10.7498/aps.67.20181014
    [10] 张伟, 张合, 陈勇, 张祥金, 徐孝彬. 脉冲激光四象限探测器测角不确定性统计分布. 物理学报, 2017, 66(1): 012901. doi: 10.7498/aps.66.012901
    [11] 季袁冬, 屠浙, 赖莉, 罗懋康. 非对称耦合粒子链在棘齿势中的确定性定向输运. 物理学报, 2015, 64(7): 070501. doi: 10.7498/aps.64.070501
    [12] 李鹤龄, 王娟娟, 杨斌, 王亚妮, 沈宏君. 广义不确定性原理下费米气体低温热力学性质. 物理学报, 2015, 64(8): 080502. doi: 10.7498/aps.64.080502
    [13] 王曦, 王渝红, 李兴源, 苗淼. 考虑模型不确定性和时延的静止无功补偿器自适应滑膜控制器设计. 物理学报, 2014, 63(23): 238407. doi: 10.7498/aps.63.238407
    [14] 吴学礼, 刘杰, 张建华, 王英. 基于不确定性变时滞分数阶超混沌系统的滑模自适应鲁棒的同步控制. 物理学报, 2014, 63(16): 160507. doi: 10.7498/aps.63.160507
    [15] 任丹, 杜平安, 聂宝林, 曹钟, 刘文奎. 一种考虑小孔尺寸效应的孔阵等效建模方法. 物理学报, 2014, 63(12): 120701. doi: 10.7498/aps.63.120701
    [16] 徐庭栋, 刘珍君, 于鸿垚, 王凯. 拉伸试验测试金属韧性的不确定性:中温脆性和应变速率脆性. 物理学报, 2014, 63(22): 228101. doi: 10.7498/aps.63.228101
    [17] 吴涛, 金义富, 侯睿, 杨俊杰. 不确定性边缘表示与提取的认知物理学方法. 物理学报, 2013, 62(6): 064201. doi: 10.7498/aps.62.064201
    [18] 李永, 方锦清, 刘强. 多种确定性广义Farey组织的网络金字塔. 物理学报, 2010, 59(5): 2991-3000. doi: 10.7498/aps.59.2991
    [19] 岳 东, Jun Yoneyama. 含不确定性混沌系统的模糊自适应同步. 物理学报, 2003, 52(2): 292-297. doi: 10.7498/aps.52.292
    [20] 李智, 韩崇昭. 一类含参数不确定性混沌系统的自适应控制. 物理学报, 2001, 50(5): 847-850. doi: 10.7498/aps.50.847
计量
  • 文章访问数:  4933
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-16
  • 修回日期:  2020-12-18
  • 上网日期:  2021-05-06
  • 刊出日期:  2021-05-20

/

返回文章
返回