-
二维磁性材料是近年来发展起来的新兴材料, 在单层或者少层的原子厚度中以其独特的磁性特性和结构特征而备受关注. 其中铁磁性材料在信息存储和处理等方面有着广泛的应用, 所以当前研究主要集中在丰富二维铁磁数据库以及开发磁调制的修饰策略上. 本文通过常压化学气相沉积法在云母片衬底上成功生长出了二维钒掺杂Cr2S3纳米片, 获得了钒源温度765 ℃和质量0.010 g为纳米片生长情况最适中条件, 并通过光学显微镜、原子力显微镜、拉曼光谱仪、扫描电子显微镜、X射线能谱、X射线光电子能谱对纳米片进行表征. 同时掺杂样品的磁性表征表明钒掺杂后样品居里转变温度变为105 K, 由亚铁磁性变为铁磁性, 矫顽力也显著增大, 证明钒掺杂可以有效地调控Cr2S3纳米片的磁性. 这些研究结果将有望推动钒掺杂Cr2S3材料向着实际应用的的可能性, 成为下一代自旋电子应用的理想候选材料之一.Two-dimensional magnetic materials are emerging materials developed in recent years and have attracted much attention for their unique magnetic properties and structural features in single-layer or few layers of atomic thickness. Among them, ferromagnetic materials have a wide range of applications such as in information memory and processing. Therefore the current research mainly focuses on enriching the two-dimensional ferromagnetic database and developing modification strategies for magnetic modulation. In this work, two-dimensional vanadium-doped Cr2S3 nanosheets successfully grow on mica substrates by atmospheric pressure chemical vapour deposition. The thickness and size of the nanosheet can be effectively regulated by changing the temperature and mass of vanadium source VCl3 powder, with the temperature of 765 ℃ and the mass of 0.010 g as the most appropriate conditions for the growth of nanosheets. The nanosheets are also characterised by optical microscopy, atomic force microscopy, Raman spectroscopy, scanning electron microscopy, X-ray energy spectroscopy, and X-ray photoelectron spectroscopy, and the nanosheet is regular in shape, with flat surface and controllable thickness, and the high-quality vanadium-doped Cr2S3 nanosheet is prepared. Meanwhile, the magnetic characterisations of the doped samples show that the Curie transition temperatures of the vanadium doped samples change to 105 K, and the maximum magnetic moment point of 75 K in the M-T curve disappears after V doping, and from subferromagnetic material to ferromagnetic material, and the coercivity in the M-H curve also increases significantly, which proves that the vanadium doping can effectively regulate the magnetic properties of Cr2S3 nanosheets. These results are expected to advance the vanadium-doped Cr2S3 materials toward practical applications and become one of the ideal candidate materials for the next-generation spintronic applications.
-
Keywords:
- two-dimensional magnetic materials /
- chemical vapour deposition /
- vanadium-doped Cr2S3 /
- ferromagnetism
[1] Burch K S, Mandrus D, Park J G 2018 Nature 563 47Google Scholar
[2] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Pablo Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar
[3] Klein D R, MacNeill D, Lado J L, Soriano D, Navarro-Moratalla E, Watanabe K, Taniguchi T, Manni S, Canfield P, Fernández-Rossier J, Jarillo-Herrero P 2018 Science 360 1218Google Scholar
[4] Jiang S W, Li L Z, Wang Z F, Shan J, Mak K F 2019 Nat. Electron. 2 159Google Scholar
[5] Lin X Y, Yang W, Wang K L, Zhao W S 2019 Nat. Electron. 2 274Google Scholar
[6] Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S, Han Z, Zhang Z D 2018 Nat. Nanotechnol. 13 554Google Scholar
[7] Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar
[8] Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar
[9] Chen W J, Sun Z Y, Wang Z J, Gu L H, Xu X D, Wu S W, Gao C L 2019 Science 366 983Google Scholar
[10] Jiang H N, Zhang P, Wang X G, Gong Y J 2021 Nano Res. 14 1789Google Scholar
[11] Wang H, Wen Y, Zhao X X, Cheng R Q, Yin L, Zhai B X, Jiang J, Li Z W, Liu C S, Wu F C, He J 2023 Adv. Funct. Mater. 35 2211388Google Scholar
[12] Lu S H, Zhou Q H, Guo Y L, Zhang Y H, Wu Y L, Wang J L 2020 Adv. Mater. 32 2002658Google Scholar
[13] Guo Y L, Wang B, Zhang X W, Yuan S J, Ma L, Wang J L 2020 InfoMat 2 639Google Scholar
[14] Zha H M, Li W, Zhang G J, Liu W J, Deng L W, Jiang Q, Ye M, Wu H, Chang H X, Qiao S 2023 Chin. Phys. Lett. 40 087501Google Scholar
[15] Zhang Y L, Zhang Y Y, Ni J Y, Yang J H, Xiang H J, Gong X G 2021 Chin. Phys. Lett. 38 027501Google Scholar
[16] Eremeev S V, Otrokov M M, Chulkov E V 2018 Nano Lett. 18 6521Google Scholar
[17] Hu T, Zhao G D, Gao H, Wu Y B, Hong J S, Stroppa A, Ren W 2020 Phys. Rev. B 101 125401Google Scholar
[18] Yang S X, Chen Y J, Jiang C B 2021 InfoMat 3 397Google Scholar
[19] Abramchuk M, Jaszewski S, Metz K R, Osterhoudt G B, Wang Y P, Burch K S, Tafti F 2018 Adv. Mater. 30 1801325.Google Scholar
[20] Duan H L, Guo P, Wang C, et al. 2019 Nat. Commum. 10 1584Google Scholar
[21] Zhou S S, Wang R Y, Han J B, Wang D L, Li H Q, Gan L, Zhai T Y 2019 Adv. Funct. Mater. 29 1805880Google Scholar
[22] Chu J W, Zhang Y, Wen Y, Qiao R X, Wu C C, He P, Yin L, Cheng R Q, Wang F, Wang Z X, Xiong J, Li Y R, He J 2019 Nano Lett. 19 2154Google Scholar
[23] Cui F F, Zhao X X, Xu J J, Tang B, Shang Q Y, Shi J P, Huan Y H, Liao J H, Chen Q, Hou Y L, Zhang Q, Pennycook S J, Zhang Y F 2020 Adv. Mater. 32 1905896Google Scholar
[24] Zhou X Y, Liu C, Song L T, et al. 2022 Sci. China-Phys. Mech. Astron. 65 276811Google Scholar
[25] 杨瑞龙, 张钰樱 2023 材料工程 51 162Google Scholar
Yang R L, Zhang Y Y 2023 J. Mater. Engineer. 51 162Google Scholar
[26] Guo Y Q, Deng H T, Sun X, et al. 2017 Adv. Mater. 29 1700715Google Scholar
-
图 2 不同钒源温度与质量条件下生长的纳米片光学形貌图 (a)—(c) 735, 750, 765 ℃钒源温度条件下生长的纳米片光学照片; (d)—(f) 0.005, 0.010, 0.015 g钒源质量条件下生长的纳米片光学照片
Fig. 2. Optical morphology of nanosheets grown under different vanadium source temperature and mass conditions: Optical image of nanosheets grown under the vanadium source temperature conditions of (a) 735, (b) 750, and (c) 765 ℃; optical image of nanosheets grown under the vanadium source mass conditions of (d) 0.005, (e) 0.010, and (f) 0.015 g.
-
[1] Burch K S, Mandrus D, Park J G 2018 Nature 563 47Google Scholar
[2] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Pablo Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar
[3] Klein D R, MacNeill D, Lado J L, Soriano D, Navarro-Moratalla E, Watanabe K, Taniguchi T, Manni S, Canfield P, Fernández-Rossier J, Jarillo-Herrero P 2018 Science 360 1218Google Scholar
[4] Jiang S W, Li L Z, Wang Z F, Shan J, Mak K F 2019 Nat. Electron. 2 159Google Scholar
[5] Lin X Y, Yang W, Wang K L, Zhao W S 2019 Nat. Electron. 2 274Google Scholar
[6] Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S, Han Z, Zhang Z D 2018 Nat. Nanotechnol. 13 554Google Scholar
[7] Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar
[8] Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar
[9] Chen W J, Sun Z Y, Wang Z J, Gu L H, Xu X D, Wu S W, Gao C L 2019 Science 366 983Google Scholar
[10] Jiang H N, Zhang P, Wang X G, Gong Y J 2021 Nano Res. 14 1789Google Scholar
[11] Wang H, Wen Y, Zhao X X, Cheng R Q, Yin L, Zhai B X, Jiang J, Li Z W, Liu C S, Wu F C, He J 2023 Adv. Funct. Mater. 35 2211388Google Scholar
[12] Lu S H, Zhou Q H, Guo Y L, Zhang Y H, Wu Y L, Wang J L 2020 Adv. Mater. 32 2002658Google Scholar
[13] Guo Y L, Wang B, Zhang X W, Yuan S J, Ma L, Wang J L 2020 InfoMat 2 639Google Scholar
[14] Zha H M, Li W, Zhang G J, Liu W J, Deng L W, Jiang Q, Ye M, Wu H, Chang H X, Qiao S 2023 Chin. Phys. Lett. 40 087501Google Scholar
[15] Zhang Y L, Zhang Y Y, Ni J Y, Yang J H, Xiang H J, Gong X G 2021 Chin. Phys. Lett. 38 027501Google Scholar
[16] Eremeev S V, Otrokov M M, Chulkov E V 2018 Nano Lett. 18 6521Google Scholar
[17] Hu T, Zhao G D, Gao H, Wu Y B, Hong J S, Stroppa A, Ren W 2020 Phys. Rev. B 101 125401Google Scholar
[18] Yang S X, Chen Y J, Jiang C B 2021 InfoMat 3 397Google Scholar
[19] Abramchuk M, Jaszewski S, Metz K R, Osterhoudt G B, Wang Y P, Burch K S, Tafti F 2018 Adv. Mater. 30 1801325.Google Scholar
[20] Duan H L, Guo P, Wang C, et al. 2019 Nat. Commum. 10 1584Google Scholar
[21] Zhou S S, Wang R Y, Han J B, Wang D L, Li H Q, Gan L, Zhai T Y 2019 Adv. Funct. Mater. 29 1805880Google Scholar
[22] Chu J W, Zhang Y, Wen Y, Qiao R X, Wu C C, He P, Yin L, Cheng R Q, Wang F, Wang Z X, Xiong J, Li Y R, He J 2019 Nano Lett. 19 2154Google Scholar
[23] Cui F F, Zhao X X, Xu J J, Tang B, Shang Q Y, Shi J P, Huan Y H, Liao J H, Chen Q, Hou Y L, Zhang Q, Pennycook S J, Zhang Y F 2020 Adv. Mater. 32 1905896Google Scholar
[24] Zhou X Y, Liu C, Song L T, et al. 2022 Sci. China-Phys. Mech. Astron. 65 276811Google Scholar
[25] 杨瑞龙, 张钰樱 2023 材料工程 51 162Google Scholar
Yang R L, Zhang Y Y 2023 J. Mater. Engineer. 51 162Google Scholar
[26] Guo Y Q, Deng H T, Sun X, et al. 2017 Adv. Mater. 29 1700715Google Scholar
计量
- 文章访问数: 2268
- PDF下载量: 183
- 被引次数: 0