搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冷冻光学显微镜技术在光合作用研究中的发展与应用

张先骏

引用本文:
Citation:

冷冻光学显微镜技术在光合作用研究中的发展与应用

张先骏

Development and Application of Cryogenic Optical Microscopy in Photosynthesis

Xianjun Zhang
PDF
导出引用
  • 在植物中,光合作用的高效光电转化效率归因于色素蛋白复合体中所建立的强大捕光网络与灵活的能量转移机制。对色素蛋白复合体结构与功能的解析是光合作用研究中的重要方向,对人工光合作用研究和能源可持续发展战略具有指导意义。随着冷冻电子显微镜的快速发展,大量复合体的精密结构得以解析。冷冻光学(光谱)显微镜是冷冻电子显微镜的重要互补技术,发展至今已有约35年的历史。该方法通过光谱特征可精确识别多种色素蛋白复合体,而低温成像不仅有效地抑制了单个复合体或细胞样品的光损伤,还限制了复合体中色素间的uphill能量转移,从而提高荧光量子收率。冷冻光学显微镜不仅成为表征单个蛋白质的结构动态与捕光功能的有力工具;还为可视化和定量复杂的光合成分在细胞体内的空间分布提供了可能性。因此,该技术的应用极大地发展了在微观尺度下分析色素蛋白结构与功能的研究领域,这对于光合作用研究体系的推进具有重大意义。本文从单分子光谱与单细胞光谱技术两方面总结了冷冻光谱显微镜技术在自然光合作用中的主要应用与取得的成果,其中包括:探究色素蛋白复合体的捕光功能与蛋白质动态的关联,复合体中能量异质性的表征,在细胞体内可视化光合蛋白的能量调控机制等。
    Efficient photosynthesis reaction thanks to the flexible energy regulation of two important pigment-protein complexes photosystem II (PSII) and photosystem I (PSI). Cryogenic spectral microscopy provides information about the spatial distribution and physiological functional states of photosynthetic components in photosynthetic organisms. Under low temperatures, the uphill energy transfer between pigments is efficiently suppressed so that the temperature-dependent PSI can be well analyzed. Therefore, a cryogenic spectral microscope allows us to discuss the physiological events surrounding PSII and PSI in the independent microscopic zones. This technique can be used to complement the insufficiency of cryogenic electron microscopy and atomic force microscopy in analyzing the photophysics and photochemistry of photosynthetic species. Historically, cryogenic optical microscopes originated from the desire for single-molecule spectroscopy detection. Development to date, the combination of optical microscopies with various spectroscopic techniques has extended the possibility of a multi-perspective investigation in photosynthesis research. In this paper, I review the important and recent progress in cryogenic spectral microscopy in the field of natural photosynthesis research from two aspects: single-molecule spectroscopy and single-cell spectroscopy. Meanwhile, I illustrate the advantages of this technique in clarifying the correlation between structure variability and function of pigment-protein complexes, and the physiological responses of photosynthetic organisms to variable environments.
  • [1]

    Butler W, Kitajima M 1975 Biochim. Biophys. Acta 396 72

    [2]

    Wendler J, Holzwarth A R 1987 Biophys. J. 52 717

    [3]

    Delosme R, Olive J, Wollman F-A 1996 Biochim. Biophys. Acta 1273 150

    [4]

    Koblížek M, Komenda J, Masojídek J 1998Photosynthesis: mechanisms and effects (Springer) pp213-216

    [5]

    Iwai M, Yokono M, Inada N, Minagawa J 2010 Proc. Natl. Acad. Sci. U. S. A. 107 2337

    [6]

    Minagawa J 2011 Biochim. Biophys. Acta 1807 897

    [7]

    Tian L J, Dinc E, Croce R 2015 J. Phys. Chem. Lett. 6 2339

    [8]

    Bressan M, Dall'Osto L, Bargigia I, Alcocer M J, Viola D, Cerullo G, D'Andrea C, Bassi R, Ballottari M 2016 Na t. Plants 2 1

    [9]

    Dinc E, Tian L, Roy L M, Roth R, Goodenough U, Croce R 2016 Proc. Natl. Acad. Sci. U. S. A. 113 7673

    [10]

    Dickson R M, Cubitt A B, Tsien R Y, Moerner W E 1997 Nature 388 355

    [11]

    Jelezko F, Tietz C, Gerken U, Wrachtrup J, Bittl R 2000 J. Phys. Chem. B 104 8093

    [12]

    Brecht M, Studier H, Radics V, Nieder J B, Bittl R 2008 J. Am. Chem. Soc. 130 17487

    [13]

    Kunz R, Timpmann K, Southall J, Cogdell R J, Kohler J, Freiberg A 2013 J. Phys. Chem. B 117 12020

    [14]

    Schorner M, Beyer S R, Southall J, Cogdell R J, Kohler J 2015 J. Phys. Chem. B 119 13964

    [15]

    Kondo T, Gordon J B, Pinnola A, Dall’Osto L, Bassi R, Schlau-Cohen G S 2019 Proc. Natl. Acad. Sci. U. S. A. 116 11247

    [16]

    Kondo T, Mutoh R, Arai S, Kurisu G, Oh-Oka H, Fujiyoshi S, Matsushita M 2022 J. Chem. Phys. 156

    [17]

    Kondo T, Shibata Y 2022 Biophysics and Physicobiology 19 e190013

    [18]

    Li H, Wang Y G, Ye M P, Li S S, Li D Y, Ren H S, Wang M H, Du L C, Li H, Veglia G, G J L, Weng Y X 2020 Sci. China Chem. 63 1121

    [19]

    Ruan M X, Li H, Zhang Y, Zhao R Q, Zhang J, Wang Y J, Gao J L, Wang Z, Wang Y X, Sun D P, Ding W, Weng Y X 2023 Nat. Plants 9 1547

    [20]

    Elber R, Karplus M 1987 Science 235 318

    [21]

    Frauenfelder H, Sligar S G, Wolynes P G 1991 Science 254 1598

    [22]

    Hofmann C, Aartsma T J, Michel H, Köhler J 2003 Proc. Natl. Acad. Sci. U. S. A. 100 15534

    [23]

    Bopp M A, Jia Y W, Li L Q, Cogdell R J, Hochstrasser R M 1997 Proc. Natl. Acad. Sci. U. S. A. 94 10630

    [24]

    Rutkauskas D, Novoderezkhin V, Cogdell R J, van Grondelle R 2004 Biochemistry 43 4431

    [25]

    Elli A F, Jelezko F, Tietz C, Studier H, Brecht M, Bittl R, Wrachtrup J 2006 Biochemistry 45 1454

    [26]

    Brecht M, Studier H, Elli A F, Jelezko F, Bittl R 2007 Biochemistry 46 799

    [27]

    Ma tsushita M lang=EN-US 2008 Seibutsu Butsuri 48 035

    [28]

    Brotosudarmo T H, Kunz R, Bohm P, Gardiner A T, Moulisova V, Cogdell R J, Kohler J 2009 Biophys. J. 97 1491

    [29]

    Kondo T, Chen W J, Schlau-Cohen G S 2017 Chem. Rev. 117 860

    [30]

    Squires A H, Wang Q, Moerner W 2017 Biophys. J. 112 471a

    [31]

    Hatazaki S, Sharma D K, Hirata S, Nose K, Iyoda T, Kölsch A, Lokstein H, Vacha M 2018 J. Phys. Chem. Lett. 9 6669

    [32]

    Jana S, Du T, Nagao R, Noguchi T, Shibata Y 2019 Biochim. Biophys. Acta 1860 30

    [33]

    Otomo K, Dewa T, Matsushita M, Fujiyoshi S 2023 J. Phys. Chem. B 127 4959

    [34]

    Zhang X J, Taniguchi R, Nagao R, Tomo T, Noguchi T, Ye S, Shibata Y 2024 J. Phys. Chem. B 128 2664

    [35]

    Müller P, Li X P, Niyogi K K 2001 Plant Physiol. 125 1558

    [36]

    Wollman F A 2001 EMBO J 20 3623

    [37]

    Kanazawa A, Kramer D M 2002 Proc. Natl. Acad. Sci. U. S. A. 99 12789

    [38]

    Rozak P, Seiser R, Wacholtz W, Wise R 2002 Plant Cell Environ. 25 421

    [39]

    Bellafiore S, Barneche F, Peltier G, Rochaix J-D 2005 Nature 433 892

    [40]

    Wientjes E, van Amerongen H, Croce R 2013 Biochim. Biophys. Acta 1827 420

    [41]

    Ünlü C, Drop B, Croce R, van Amerongen H 2014 Proc. Natl. Acad. Sci. U. S. A. 111 3460

    [42]

    Kim E, Ahn T K, Kumazaki S 2015 Plant Cell Physiol. 56 759

    [43]

    Nawrocki W J, Santabarbara S, Mosebach L, Wollman F-A, Rappaport F 2016 Nat. Plants 2 1

    [44]

    de la Cruz Valbuena G, VA Camargo F, Borrego-Varillas R, Perozeni F, D’Andrea C, Ballottari M, Cerullo G 2019 J. Phys. Chem. Lett. 10 2500

    [45]

    Calzadilla P I, Kirilovsky D 2020 Photochem. Photobiol. Sci.

    [46]

    Huang Z H, Shen L L, Wang W D, Mao Z Y, Yi X H, Kuang T Y, Shen J R, Zhang X, Han G Y 2021 Nat. Commun. 12 1

    [47]

    Huokko T, Ni T, Dykes G F, Simpson D M, Brownridge P, Conradi F D, Beynon R J, Nixon P J, Mullineaux C W, Zhang P 2021 Nat. Commun. 12 1

    [48]

    Zhang X J, Fujita Y, Tokutsu R, Minagawa J, Ye S, Shibata Y 2021 Plant Cell Physiol.

    [49]

    Zhang X J, Fujita Y, Kaneda N, Tokutsu R, Ye S, Minagawa J, Shibata Y 2022 Proc. Natl. Acad. Sci. U. S. A. 119 e2122032119

    [50]

    Hamel P, Olive J, Pierre Y, Wollman F-A, de Vitry C 2000 J. Biol. Chem. 275 17072

    [51]

    Finazzi G, Rappaport F, Furia A, Fleischmann M, Rochaix J D, Zito F, Forti G 2002 EMBO reports 3 280

    [52]

    Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T 2002 Cell 110 361

    [53]

    DalCorso G, Pesaresi P, Masiero S, Aseeva E, Schünemann D, Finazzi G, Joliot P, Barbato R, Leister D 2008 Cell 132 273

    [54]

    Krause G, Briantais J-M, Vernotte C 1983 Biochim. Biophys. Acta 723 169

    [55]

    Fujita Y, Ito W, Washiyama K, Shibata Y 2018 J. Photochem. Photobiol. B: Biol. 185 111

    [56]

    Fujita Y, Zhang X J, Mohamed A, Ye S, Shibata Y 2022 J. Photochem. Photobiol. B: Biol. 236 112584

    [57]

    Uniacke J, Zerges W 2007 Plant Cell 19 3640

    [58]

    Nixon P J, Michoux F, Yu J, Boehm M, Komenda J 2010 Ann. Bot. 106 1

    [59]

    Nickelsen J, Rengstl B 2013 Annu. Rev. Plant Biol. 64 609

    [60]

    Nellaepalli S, Ozawa S I, Kuroda H, Takahashi Y 2018 Nat. Commun. 9 2439

    [61]

    Chiba T, Shibata Y 2019 Biochim. Biophys. Acta 1860 148090

    [62]

    Croce R, Van Amerongen H 2014 Nat. Chem. Biol. 10 492

    [63]

    Oviedo M B, Sánchez C G 2011 J. Phys. Chem. A 115 12280

    [64]

    Fuchs B M, Spring S, Teeling H, Quast C, Wulf J, Schattenhofer M, Yan S, Ferriera S, Johnson J, Glöckner F O 2007 Proc. Natl. Acad. Sci. U. S. A. 104 2891

    [65]

    Wasielewski M R, Kispert L D 1986 Chem. Phys. Lett. 128 238

    [66]

    Son M, Hart S M, Schlau-Cohen G S 2021 Trends Chem. 3 733

    [67]

    Suga M, Ozawa S-I, Yoshida-Motomura K, Akita F, Miyazaki N, Takahashi Y 2019 Nat. Plants 5 626

    [68]

    Jordan P, Fromme P, Witt H T, Klukas O, Saenger W, Krauß N 2001 Nature 411 909

    [69]

    Brecht M 2009 Mol. Phys. 107 1955

    [70]

    Hussels M, Brecht M 2011 Biochemistry 50 3628

    [71]

    Köhler J, Cogdell R J 2019Metabolism, Structure and Function of Plant Tetrapyrroles: Control Mechanisms of Chlorophyll Biosynthesis and Analysis of Chlorophyll-Binding Proteins pp1-31

    [72]

    Hayes J, Matsuzaki S, Rätsep M, Small G 2000 J. Phys. Chem. B 104 5625

    [73]

    Rätsep M, Johnson T, Chitnis P, Small G 2000 J. Phys. Chem. B 104 836

    [74]

    Zazubovich V, Matsuzaki S, Johnson T, Hayes J, Chitnis P, Small G 2002 Chem. Phys. 275 47

    [75]

    Riley K J, Reinot T, Jankowiak R, Fromme P, Zazubovich V 2007 J. Phys. Chem. B 111 286

    [76]

    Skandary S, Konrad A, Hussels M, Meixner A J, Brecht M 2015 J. Phys. Chem. B 119 13888

    [77]

    Kato K, Shinoda T, Nagao R, Akimoto S, Suzuki T, Dohmae N, Chen M, Allakhverdiev S I, Shen J R, Akita F 2020 Nat. Commun. 11 238

    [78]

    Toporik H, Khmelnitskiy A, Dobson Z, Riddle R, Williams D, Lin S, Jankowiak R, Mazor Y 2020 Nat. Commun. 11 5279

    [79]

    Coruh O, Frank A, Tanaka H, Kawamoto A, El-Mohsnawy E, Kato T, Namba K, Gerle C, Nowaczyk M M, Kurisu G 2021 Commun. Biol. 4 304

    [80]

    Kato K, Hamaguchi T, Nagao R, Kawakami K, Ueno Y, Suzuki T, Uchida H, Murakami A, Nakajima Y, Yokono M 2022 Elife 11 e73990

    [81]

    Akita F, Nagao R, Kato K, Nakajima Y, Yokono M, Ueno Y, Suzuki T, Dohmae N, Shen J-R, Akimoto S 2020 Commu. Biol. 3 232

    [82]

    Klar T A, Jakobs S, Dyba M, Egner A, Hell S W 2000 Proc. Natl. Acad. Sci. U. S. A. 97 8206

    [83]

    Giske A 2007 Ph. D. Dissertation (Heidelberg: Heidelberg University)

    [84]

    Zhang X J, Shibata Y, Kumazaki S 2023 J. Photochem. Photobiol. C. 100616

    [85]

    Ambrose W P, Basche T, Moerner W E 1991 J. Chem. Phys. 95 7150

    [86]

    Vacha M, Yokoyama H, Tokizaki T, Furuki M, Tani T 1999 Rev. Sci. Instrum. 70 2041

    [87]

    Jasny J, Sepiol J, Irngartinger T, Traber M, Renn A, Wild U P 1996 Rev. Sci. Instrum. 67 1425

    [88]

    Fujiyoshi S, Fujiwara M, Kim C, Matsushita M, van Oijen A M, Schmidt J 2007 Appl. Phys. Lett. 91

    [89]

    Vacha F, Vacha M, Bumba L, Hashizume K, Tani T 2000 Photosynthetica 38 493

    [90]

    Vácha F, Sarafis V, Benediktyová Z, Bumba L, Valenta J, Vácha M, Sheue C-R, Nedbal L 2007 Micron 38 170

    [91]

    Sugiura K, Itoh S 2012 Plant Cell Physiol. 53 1492

    [92]

    Breunig H G, Tumer F, Konig K 2013 J. Biophotonics 6 622

    [93]

    Shibata Y, Katoh W, Tahara Y 2013 Biochim. Biophys. Acta 1827 520

    [94]

    Steinbach G, Schubert F, Kana R 2015 J. Photochem. Photobiol. B: Biol.152 395

    [95]

    Fujiwara M, Ishii T, Ishida K, Toratani Y, Furubayashi T, Matsushita M, Fujiyoshi S 2019 Appl. Phys. Lett. 115

    [96]

    Yoshimoto M 2000 Jpn. J. Appl. Phys. 39 6105

    [97]

    Shibata Y, Katoh W, Chiba T, Namie K, Ohnishi N, Minagawa J, Nakanishi H, Noguchi T, Fukumura H 2014 Biochim. Biophys. Acta 1837 880

    [98]

    Metzger M, Konrad A, Skandary S, Ashraf I, Meixner A J, Brecht M 2016 Opt. Express 24 13023

    [99]

    Wang L, Bateman B, Zanetti-Domingues L C, Moores A N, Astbury S, Spindloe C, Darrow M C, Romano M, Needham S R, Beis K, Rolfe D J, Clarke D T, Martin-Fernandez M L 2019 Commun. Biol. 2

    [100]

    Huebinger J, Grecco H, Masip M E, Christmann J, Fuhr G R, Bastiaens P I H 2021 Sci. Adv. 7

    [101]

    Yamanaka M, Tsuji K, Kumamoto Y, Tamura S, Miyamura W, Kubo T, Mizushima K, Kono K, Hirano H, Sugiura K 2023 bioRxiv 2023.08. 01.551103

    [102]

    Hasegawa M, Yoshida T, Yabuta M, Terazima M, Kumazaki S 2011 J. Phys. Chem. B 115 4184

    [103]

    van Oijen A M, Ketelaars M, Kohler J, Aartsma T J, Schmidt J 1999 Science 285 400

    [104]

    Jana S, Shibata Y 2020 Biophys. J. 118 36

    [105]

    Girolomoni L, Cazzaniga S, Pinnola A, Perozeni F, Ballottari M, Bassi R 2019 Proc. Natl. Acad. Sci. U. S. A. 116 4212

    [106]

    Kondo T, Pinnola A, Chen W J, Dall'Osto L, Bassi R, Schlau-Cohen G S 2017 Nat. Chem. 9 772

    [107]

    Kondo T, Shibata Y 2022 Biophysics and Physicobiology 19

    [108]

    Barzda V, de Grauw C J, Vroom J, Kleima F J, van Grondelle R, van Amerongen H, Gerritsen H C 2001 Biophys. J. 81 538

    [109]

    Barzda V, Gulbinas V, Kananavicius R, Cervinskas V, Van Amerongen H, Van Grondelle R, Valkunas L 2001 Biophys. J. 80 2409

    [110]

    Robert B 2009 Photosynth. Res. 101 147

    [111]

    Tamamizu K, Kumazaki S 2019 Biochim. Biophys. Acta 1860 78

    [112]

    Tamamizu K, Sakamoto T, Kurashige Y, Nozue S, Kumazaki S 2023 Spectrochimica Acta. Part A 290 122258

    [113]

    Wu H W, Volponi J V, Oliver A E, Parikh A N, Simmons B A, Singh S 2011 Proc. Natl. Acad. Sci. U. S. A. 108 3809

    [114]

    Gall A, Pascal A A, Robert B 2015 Biochim. Biophys. Acta 1847 12

    [115]

    Mizushima K, Kumamoto Y, Tamura S, Yamanaka M, Mochizuki K, Li M, Egoshi S, Dodo K, Harada Y, Smith N I 2023 bioRxiv 2023.11. 15.567077

    [116]

    Jiang S, Zhang Y, Zhang R, Hu C R, Liao M H, Luo Y, Yang J L, Dong Z C, Hou J G 2015 Nat. Nanotechnol. 10 865

    [117]

    Hasegawa M, Shiina T, Terazima M, Kumazaki S 2010 Plant Cell Physiol. 51 225

    [118]

    Gitelson A A, Buschmann C, Lichtenthaler H K 1998 J. Plant Physiol. 152 283

    [119]

    Watkins L P, Yang H 2005 J. Phys. Chem. B 109 617

    [120]

    Schlau-Cohen G S, Wang Q, Southall J, Cogdell R J, Moerner W 2013 Proc. Natl. Acad. Sci. U. S. A. 110 10899

    [121]

    Schlau-Cohen G S, Yang H-Y, Krüger T P, Xu P, Gwizdala M, Van Grondelle R, Croce R, Moerner W 2015 J. Phys. Chem. Lett. 6 860

    [122]

    Goldsmith R H, Moerner W 2010 Nat. Chem. 179

    [123]

    Allorent G, Lefebvre-Legendre L, Chappuis R, Kuntz M, Truong T B, Niyogi K K, Ulm R, Goldschmidt-Clermont M 2016 Proc. Natl. Acad. Sci. U. S. A. 113 14864

    [124]

    Tokutsu R, Fujimura-Kamada K, Yamasaki T, Okajima K, Minagawa J 2021 Plant Physiol. 185 1894

    [125]

    Horton P, Wentworth M, Ruban A 2005 FEBS Lett. 579 4201

    [126]

    Liguori N, Roy L M, Opacic M, Durand G, Croce R 2013 J. Am. Chem. Soc. 135 18339

    [127]

    Holub O, Seufferheld M J, Gohlke C, Govindjee, Clegg R M 2000 Photosynthetica 38 581

    [128]

    Holub O, Seufferheld M, Gohlke C, Govindjee, Heiss G, Clegg R 2007 J. Microsc. 226 90

    [129]

    Chiba T, Shibata Y 2019 Biochim. Biophys. Acta 1860 148090

    [130]

    Nozue S, Mukuno A, Tsuda Y, Shiina T, Terazima M, Kumazaki S 2016 Biochim. Biophys. Acta 1857 46

    [131]

    Tamarat P, Maali A, Lounis B, Orrit M 2000 J. Phys. Chem. A 104 1

    [132]

    Kaufmann R, Hagen C, Grunewald K 2014 Curr. Opin. Chem. Biol. 20 86

    [133]

    Shibata Y, Katoh W, Chiba T, Namie K, Ohnishi N, Minagawa J, Nakanishi H, Noguchi T, Fukumura H 2014 Biochim. Biophys. Acta 1837 880

    [134]

    Nabhan M A, Silvera Batista C A, Cliffel D E, Jennings G K 2023 ACS Appl. Polym. Mater. 5 3278

    [135]

    Gust A, Zander A, Gietl A, Holzmeister P, Schulz S, Lalkens B, Tinnefeld P, Grohmann D 2014 Molecules 19 15824

    [136]

    Paul T, Myong S 2022 STAR protocols 3 101152

    [137]

    Cohen A E, Moerner W 2005 Appl. Phys. Lett. 86

    [138]

    Brotosudarmo T H P, Wittmann B, Seki S, Fujii R, Köhler J r 2022 J. Phys. Chem. Lett. 13 5226

    [139]

    Basché T, Moerner W, Orrit M, Talon H 1992 Phys. Rev. Lett. 69 1516

    [140]

    Hussels M, Brecht M 2011 FEBS Lett. 585 2445

    [141]

    Hussels M, Brecht M 2011 Biochemistry 50 3628

    [142]

    Zhang X J, Fujita Y, Kaneda N, Tokutsu R, Ye S, Minagawa J, Shibata Y 2021 bioRxiv 2021.10.27.465227

    [143]

    Moerner W, Fromm D P 2003 Rev. Sci. Instrum. 74 3597

    [144]

    Brecht M, Radics V, Nieder J B, Bittl R 2009 Proc. Natl. Acad. Sci. U. S. A. 106 11857

    [145]

    Ishii K, Tahara T 2013 J. Phys. Chem. B 117 11423

    [146]

    Ishii K, Tahara T 2013 J. Phys. Chem. B 117 11414

    [147]

    Sarkar B, Ishii K, Tahara T 2024 J. Phys. Chem. B 128 4685

    [148]

    Wang D H, Fiebig O C, Harris D, Toporik H, Ji Y, Chuang C, Nairat M, Tong A L, Ogren J I, Hart S M 2023 Proc. Natl. Acad. Sci. U. S. A. 120 e2220477120

    [149]

    Kunz R, Timpmann K, Southall J, Cogdell R J, Freiberg A, Kohler J 2014 Biophys. J. 106 2008

    [150]

    Weng Y X 2007PHYSICS 36 816(in Chinese) [ 翁羽翔2007 物理 36 816]

    [151]

    Kunz R, Timpmann K, Southall J, Cogdell R J, Freiberg A, Köhler J r 2012 J. Phys. Chem. B 116 11017

    [152]

    Kunz R, Timpmann K, Southall J, Cogdell R J, Freiberg A, Köhler J 2013 Angew. Chem. 52 8726

    [153]

    Leng X, Wang Z, Weng Y X 2016Plant Physiology Journal 521681(in Chinese) [ 冷轩, 王专, 翁羽翔2016 植物生理学报 52 1681]

    [154]

    Hildner R, Brinks D, Nieder J B, Cogdell R J, Van Hulst N F 2013 Science 340 1448

    [155]

    Pålsson L-O, Dekker J P, Schlodder E, Monshouwer R, van Grondelle R 1996 Photosynth. Res. 48 239

    [156]

    Beekman L M, Frese R N, Fowler G J, Picorel R, Cogdell R J, van Stokkum I H, Hunter C N, van Grondelle R 1997 J. Phys. Chem. B 101 7293

    [157]

    Schlodder E, Hussels M, Çetin M, Karapetyan N V, Brecht M 2011 Biochim. Biophys. Acta 1807 1423

    [158]

    Liu Z F, Yan C H, Wang K B, Kuang T Y, Zhang J P, Gui L L, An X M, Chang W R 2004 Nature 428 287

    [159]

    Fujita Y, Ito W, Washiyama K, Shibata Y 2018 J. Photochem. Photobiol. B: Biol. 185 111

    [160]

    Fujita Y, Zhang X J, Mohamed A, Ye S, Shibata Y 2022 J. Photochem. Photobiol. B: Biol. 236

    [161]

    Snellenburg J J, Wlodarczyk L M, Dekker J P, van Grondelle R, van Stokkum I H 2017 Biochim. Biophys. Acta 1858 64

    [162]

    Nickelsen J, Rengstl B 2013 Annu. Rev. Plant Biol. 64 609

    [163]

    Nellaepalli S, Ozawal S I, Kuroda H, Takahashi Y 2018 Nat. Commun. 9

    [164]

    Ozawa S-i, Onishi T, Takahashi Y 2010 J. Biol. Chem. 285 20072

    [165]

    Shao S X 2017 Ph. D. Dissertation ( London: Imperial College London)

    [166]

    Shibata K 1957 J. Biochem. 44 147

    [167]

    Schuster G, Ohad I, Martineau B, Taylor W C 1985 J. Biol. Chem. 260 11866

    [168]

    Franck F, Eullaffroy P, Popovic R 1997 Photosynth. Res. 51 107

    [169]

    Sundqvist C, Dahlin C 1997 Physiol. Plant. 100 748

    [170]

    Marchand M, Dewez D, Franck F, Popovic R 2004 J. Photochem. Photobiol. B: Biol. 75 73

    [171]

    Amirjani M, Sundqvist C 2006 Photosynthetica 44 83

    [172]

    Peng L W, Ma J F, Chi W, Guo J K, Zhu S Y, Lu Q T, Lu C M, Zhang L X 2006 Plant Cell 18 955

    [173]

    Shibata Y, Katoh W, Tahara Y 2013 Biochim. Biophys. Acta 1827 520

    [174]

    Chiba T, Shibata Y 2019 Biochim. Biophys. Acta 1860

    [175]

    Kovacevic D, Dewez D, Popovic R 2007 Photosynthetica 45 105

    [176]

    Hell S W, Wichmann J 1994 Opt. Lett. 19 780

    [177]

    Blom H, Widengren J 2017 Chem. Rev. 117 7377

    [178]

    Huebinger J, Grecco H, Masip M E, Christmann J, Fuhr G R, Bastiaens P I 2021 Sci. Adv. 7 eabk0882

    [179]

    Kozawa Y, Nakamura T, Uesugi Y, Sato S 2022 Biomed. Opt. Express 13 1702

    [180]

    Komura M, Itoh S 2009 Photosynth. Res. 101 119

    [181]

    Kusumi A, Tsuji A, Murata M, Sako Y, Yoshizawa A C, Kagiwada S, Hayakawa T, Ohnishi S 1991 Biochemistry 30 6517

    [182]

    Biskup C, Zimmer T, Benndorf K 2004 Nat. Biotechnol. 22 220

    [183]

    Liu L X, Li Y H, Sun L G, Li H, Peng X, Qu J L Multiphoton Microscopy in the Biomedical Sciences XIV p307-311

    [184]

    Yoneda T, Tanimoto Y, Takagi D, Morigaki K 2020 Langmuir 36 5863

    [185]

    Meredith S A, Yoneda T, Hancock A M, Connell S D, Evans S D, Morigaki K, Adams P G 2021 Small 17 2006608

    [186]

    Harris D, Toporik H, Schlau-Cohen G S, Mazor Y 2023 Nat. Commun. 14 4650

    [187]

    Onoa B, Fukuda S, Iwai M, Bustamante C, Niyogi K K 2020 Biophys. J. 118 1876

    [188]

    Yang K S, Chan F Y, Watanabe H, Yoshioka S, Inouye Y, Uchihashi T, Ishitobi H, Verma P, Umakoshi T 2024 Nano Lett. 24 2805

    [189]

    Suvorov N, Pogorilyy V, Diachkova E, Vasil’ev Y, Mironov A, Grin M 2021 Int. J. Mol. Sci. 22 6392

  • [1] 张洋, 张志豪, 王宇剑, 薛晓兰, 陈令修, 石礼伟. 偏振调制扫描光学显微镜方法. 物理学报, doi: 10.7498/aps.73.20240688
    [2] 杨冬, 李中文, 田源, 孙帅帅, 田焕芳, 杨槐馨, 李建奇. 用于超快扫描电子显微镜的光发射电子枪及电子光学模拟. 物理学报, doi: 10.7498/aps.73.20241245
    [3] 王晓英, 邢宇婷, 陈润植, 贾雪琦, 吴继华, 江进, 李连勇, 常国庆. 基于自相位调制光谱选择驱动的无标记自发荧光多倍频显微镜系统. 物理学报, doi: 10.7498/aps.71.20212282
    [4] 杨旭云, 陈永聪, 芦文斌, 朱晓梅, 敖平. 激子极化子共振束缚介导的光合作用能量传输. 物理学报, doi: 10.7498/aps.71.20221412
    [5] 陈浩, 田建民, 孙雪健, 吕可真, 徐莉华, 李宏荣. 光合作用多色素捕光模型中光激发对能量传输的影响. 物理学报, doi: 10.7498/aps.71.20211960
    [6] 张玉响, 彭倚天, 郎浩杰. 基于原子力显微镜的石墨烯表面图案化摩擦调控. 物理学报, doi: 10.7498/aps.69.20200124
    [7] 邓长发, 燕少安, 王冬, 彭金峰, 郑学军. 基于导电原子力显微镜的单根GaN纳米带光调控力电耦合性能. 物理学报, doi: 10.7498/aps.68.20191097
    [8] 石莹, 李耀, 周海涛, 陈瑞云, 张国峰, 秦成兵, 高岩, 肖连团, 贾锁堂. 一种共轭聚合物单分子发色团吸收和发射特性动态演变过程的实时测量. 物理学报, doi: 10.7498/aps.68.20181986
    [9] 张国峰, 李斌, 陈瑞云, 秦成兵, 高岩, 肖连团, 贾锁堂. 单分子光学探针揭示易混聚合物受限纳米区域的动力学. 物理学报, doi: 10.7498/aps.68.20190423
    [10] 李宏宇, 张强, 王春玲, 阳伏林, 赵建华. 空气热储存、光合作用和土壤垂直水分运动对黄土高原地表能量平衡的影响. 物理学报, doi: 10.7498/aps.61.159201
    [11] 季超, 张凌云, 窦硕星, 王鹏业. 原子力显微镜观测生物大分子图像的一种处理方法. 物理学报, doi: 10.7498/aps.60.098703
    [12] 王 笑, 潘安练, 刘 丹, 白永强, 张朝晖, 邹炳锁, 朱 星. 近场光学显微镜研究CdS0.65Se0.35纳米带空间分辨光致荧光谱. 物理学报, doi: 10.7498/aps.56.6352
    [13] 胡海龙, 张 琨, 王振兴, 王晓平. 自组装硫醇分子膜电输运特性的导电原子力显微镜研究. 物理学报, doi: 10.7498/aps.55.1430
    [14] 张兆祥, 张耿民, 侯士敏, 张 浩, 顾镇南, 刘惟敏, 赵兴钰, 薛增泉. 利用场发射显微镜研究O2对单壁碳纳米管场发射的影响. 物理学报, doi: 10.7498/aps.52.1282
    [15] 孙建平, 张兆祥, 侯士敏, 赵兴钰, 施祖进, 顾镇南, 刘惟敏, 薛增泉. 用场发射显微镜研究单壁碳纳米管场发射. 物理学报, doi: 10.7498/aps.50.1805
    [16] 亓东平, 刘德丽, 滕树云, 张宁玉, 程传福. 随机散射屏的原子力显微镜形貌分析及其光散射特性. 物理学报, doi: 10.7498/aps.49.1260
    [17] 王子洋, 李 勤, 赵 钧, 郭继华. 透射式扫描近场光学显微镜探针光场分布及其受激荧光分子光场分布研究. 物理学报, doi: 10.7498/aps.49.1959
    [18] 凌勇, 薛其坤, 陈皓明, 樱井利夫. C60分子在GaAs(001)表面的外延生长的扫描隧道显微镜研究. 物理学报, doi: 10.7498/aps.46.1559
    [19] 杨翠英, 张道范, 吴星, 周玉清, 冯国光. 光折变BaTiO3晶体缺陷的分析电子显微镜研究. 物理学报, doi: 10.7498/aps.38.2003
    [20] 张淑仪, 俞超, 苗永智, 唐正言, 高敦堂. 扫描光声显微镜. 物理学报, doi: 10.7498/aps.31.704
计量
  • 文章访问数:  104
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2024-10-08

/

返回文章
返回