搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光合作用多色素捕光模型中光激发对能量传输的影响

陈浩 田建民 孙雪健 吕可真 徐莉华 李宏荣

引用本文:
Citation:

光合作用多色素捕光模型中光激发对能量传输的影响

陈浩, 田建民, 孙雪健, 吕可真, 徐莉华, 李宏荣

Influence of the light excitation on energy transfer in a multi-pigments light-harvesting model of photosynthesis

Chen Hao, Tian Jian-Min, Sun Xue-Jian, Lü Ke-Zhen, Xu Li-Hua, Li Hong-Rong
PDF
HTML
导出引用
  • 光合作用激发能传输过程中量子效应的研究大都基于单激发初态假设, 该假设能较好地描述人们所关心的部分光合作用系统的初态. 但对于不满足上述假设条件的自然及人工光合作用系统, 激发过程对系统动力学有不可忽略的影响. 本文基于由高斯脉冲激发的多色素分子模型, 主要研究了激发脉冲宽度和激发间隔对系统动力学和激发能传输效率的影响. 首先, 推导了理论上可包含任意数量的色素分子构成的供体系统和受体系统整体演化所满足的动力学方程. 之后通过数值模拟展示了激发能传输效率随系统各相关参数变化的关系及相应参数的最优范围. 研究发现, 在单个脉冲激发供体色素分子的条件下, 存在最优脉冲宽度, 且脉冲宽度对色素分子数目、耦合强度及退相位速率的最优范围都有调制作用, 并分析了该调制作用的产生机制. 在两个高斯脉冲依次激发供体色素分子的条件下, 存在最优脉冲宽度及脉冲间隔的组合. 本文得到的动力学方程可推广到其他形式的激发脉冲, 得到的数值结果及优化设计原则对工作在不同光照条件下的人工光合作用系统的优化设计具有参考意义.
    Most studies on quantum effects in the process of excitation energy transfer in photosynthesis system are based on the single-excitation initial state hypothesis, which can well describe the initial state of some photosynthesis systems that people are concerned about. But for natural and artificial photosynthesis systems that do not meet the above hypothesis, the excitation process has a non-negligible impact on the system dynamics. Based on a multi-pigments model excited by Gaussian pulse, the effects of the excitation pulse width and the excitation interval on system dynamics and excitation energy transfer efficiency are studied. First, the kinetic equations for the overall evolution of the donor system and the acceptor system that can theoretically contain any number of pigments are derived. Afterwards, the relationship between the excitation energy transfer efficiency and the related parameters of the system, as well as the optimal range of the corresponding parameters are demonstrated by numerical simulation. It is found that under the condition of donor pigments being excited by a single Gaussian pulse, there exists optimal pulse width, and the optimal range of the pigment molecule numbers, the coupling strength as well as the dephasing rate can be modulated by the pulse width. The mechanism of the above modulation is also analyzed and presented. Under the condition of donor pigments being excited by two Gaussian pulses sequentially, there exists an optimal combination of pulse width and pulse interval. The kinetic equations obtained in this paper can be extended to other forms of excitation pulses. The numerical results and the related optimal design principles obtained have reference significance for the optimal design of artificial photosynthesis systems under different light conditions.
      通信作者: 陈浩, hchen@qhnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11774284)资助的课题.
      Corresponding author: Chen Hao, hchen@qhnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11774284)
    [1]

    Cardona T 2018 Heliyon 4 e00548Google Scholar

    [2]

    Van A H, Valkunas L, Van G R 2000 Photosynthetic Excitons (Singapore: World Scientific) pp1-45, 56

    [3]

    May V, Kühn O 2011 Charge and Energy Transfer Dynamics in Molecular Systems (Vol. 2) (Weinheim: Wiley-vch Verlag GmbH & Co. KGaA) pp1-7

    [4]

    Ishizaki A, Calhoun T R, Schlau-Cohen G S, Fleming G R 2010 Phys. Chem. Chem. Phys. 12 7319Google Scholar

    [5]

    Scholes G D, Fleming G R, Olaya-Castro A, Van G R 2011 Nat. Chem. 3 763Google Scholar

    [6]

    Olaya-Castro A, Scholes G D 2011 Int. Rev. Phys. Chem. 30 49Google Scholar

    [7]

    Collini E 2013 Chem. Soc. Rev. 42 4932Google Scholar

    [8]

    Levi F, Mostarda S, Rao F, Mintert F 2015 Rep. Prog. Phys. 78 082001Google Scholar

    [9]

    Olaya-Castro A, Lee C F, Olsen F F, Johnson N F 2008 Phys. Rev. B 78 085115Google Scholar

    [10]

    Fassioli F, Nazir A, Olaya-Castro A 2010 J. Phys. Chem. Lett. 1 2139Google Scholar

    [11]

    Zhang Y P, Li H R, Fang A P, Chen H, Li F L 2013 Chin. Phys. B 22 057104Google Scholar

    [12]

    Plenio M B, Huelga S F 2008 New J. Phys. 10 113019Google Scholar

    [13]

    Mohseni M, Rebentrost P, Lloyd S, Aspuru-Guzik A 2008 J. Chem. Phys. 129 174106Google Scholar

    [14]

    Chen H, Wang X, Han C M, Li H R 2019 J. Phys. B: At. Mol. Opt. Phys. 52 075501Google Scholar

    [15]

    Chan H C, Gamel O E, Fleming G R, Whaley K B 2018 J. Phys. B: At. Mol. Opt. Phys. 51 054002Google Scholar

    [16]

    Barbatti M 2020 J. Chem. Theory Comput. 16 4849Google Scholar

    [17]

    Li H R, Zhang P, Liu Y J, Li F L, Zhu S Y 2013 Phys. Rev. A 87 053831Google Scholar

    [18]

    Zong X L, Song W, Zhou J, Yang M, Yu L B, Cao Z L 2018 Quantum Inf. Process. 17 158

    [19]

    Golubev N V, Kuleff A I 2014 Phys. Rev. A 90 035401Google Scholar

    [20]

    Medina I, Semiao F L 2019 Phys. Rev. A 100 012103Google Scholar

    [21]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) pp248-268

    [22]

    Yang S, Xu D Z, Song Z, Sun C P 2010 J. Chem. Phys. 132 234501Google Scholar

    [23]

    Caruso F, Chin A W, Datta A, Huelga S F, Plenio M B 2009 J. Chem. Phys. 131 105106Google Scholar

  • 图 1  理论模型示意图

    Fig. 1.  Schematic diagram of the theoretical model.

    图 2  脉冲宽度$ \tau_{\rm{p}} $不同时激发能传输效率$ \eta $与供体数目$ m $和受体数目$ n $之间的关系 (a) $ \tau_{{\rm{p}}} = 0.01 V_{0}^{-1} $; (b) $ \tau_{{\rm{p}}} = 0.05 V_{0}^{-1} $; (c) $ \tau_{{\rm{p}}} = 0.1 V_{0}^{-1} $; (d) $ \tau_{{\rm{p}}} = 0.15 V_{0}^{-1} $

    Fig. 2.  The relationship between the efficiency of the excitation energy transfer $ \eta $ and the number of donors ($ m $) and acceptors ($ n $) with different pulse width $ \tau_{\rm{p}} $: (a) $ \tau_{{\rm{p}}} = 0.01 V_{0}^{-1} $; (b) $ \tau_{{\rm{p}}} = 0.05 V_{0}^{-1} $; (c) $ \tau_{{\rm{p}}} = 0.1 V_{0}^{-1} $; (d) $ \tau_{{\rm{p}}} = 0.15 V_{0}^{-1} $.

    图 3  脉冲宽度$ \tau_{\rm{p}} $不同时激发能传输效率$ \eta $与供体色素分子间耦合强度$ J_{0} $以及受体色素分子间耦合强度$ g_{0} $之间的关系 (a) $\tau_{{\rm{p}}}= $$ 0.01 V_{0}^{-1}$; (b) $ \tau_{{\rm{p}}} = 0.05 V_{0}^{-1} $; (c) $ \tau_{{\rm{p}}} = 0.1 V_{0}^{-1} $; (d) $ \tau_{{\rm{p}}} = 0.15 V_{0}^{-1} $

    Fig. 3.  The relationship between the efficiency of the excitation energy transfer $ \eta $ and the coupling strength of the donor pigments $ J_{0} $ as well as the coupling strength of the acceptor pigments $ g_{0} $ with different pulse width $ \tau_{\rm{p}} $: (a) $ \tau_{{\rm{p}}} = 0.01 V_{0}^{-1} $; (b) $\tau_{{\rm{p}}} = $$ 0.05 V_{0}^{-1}$; (c) $ \tau_{{\rm{p}}} = 0.1 V_{0}^{-1} $; (d) $ \tau_{{\rm{p}}} = 0.15 V_{0}^{-1} $

    图 4  脉冲宽度$ \tau_{\rm{p}} $及供体数目$ m $和受体数目$ n $不同时, 激发能传输效率$ \eta $与供体色素分子间耦合强度$ J_{0} $和受体色素分子间耦合强度$ g_{0} $之间的关系 (a) $ \tau_{{\rm{p}}} = 0.01 V_{0}^{-1}, \; m = 8, \; n = 3 $; (b) $ \tau_{{\rm{p}}} = 0.05 V_{0}^{-1}, \; m = 9, \; n = 3 $; (c) $ \tau_{{\rm{p}}} = 0.1 V_{0}^{-1}, \; m = 16, \; n = 7 $; (d)$ \tau_{{\rm{p}}} = 0.15 V_{0}^{-1}, \; m = 16, \; n = 12 $

    Fig. 4.  The relationship between the efficiency of the excitation energy transfer $ \eta $ and the coupling strength of the donor pigments $ J_{0} $ as well as the coupling strength of the acceptor pigments $ g_{0} $ with different pulse width $ \tau_p $, donor pigments number $ m $ and acceptor pigments number $ n $: (a) Pulse width $ \tau_{{\rm{p}}}=0.01 V_{0}^{-1}, \; m = 8, \; n = 3 $; (b) pulse width $ \tau_{{\rm{p}}}=0.05 V_{0}^{-1}, \; m = 9, \; n = 3 $; (c) pulse width $ \tau_{{\rm{p}}}=0.1 V_{0}^{-1}, \; m = 16, \; n = 7 $; (d) pulse width $ \tau_{{\rm{p}}}=0.15 V_{0}^{-1}, \; m = 16, \; n = 12 $

    图 5  激发能传输效率$ \eta $与脉冲宽度$ \tau_{{\rm{p}}} $之间的关系

    Fig. 5.  The relationship between the efficiency of the excitation energy transfer $ \eta $ and the pulse width $ \tau_{\rm{p}} $

    图 6  脉冲宽度$ \tau_{\rm{p}} $不同时激发能传输效率$ \eta $与供体色素分子的退相位速率$ \varGamma^{\prime} $以及受体分子的退相位速率$ \kappa^{\prime} $之间的关系 (a) $\tau_{{\rm{p}}} = $$ 0.01 V_{0}^{-1}$; (b) $ \tau_{{\rm{p}}} = 0.05 V_{0}^{-1} $; (c) $ \tau_{{\rm{p}}} = 0.1 V_{0}^{-1} $; (d) $ \tau_{{\rm{p}}} = 0.15 V_{0}^{-1} $

    Fig. 6.  The relationship between the efficiency of the excitation energy transfer $ \eta $ and the dephasing rate of the donor pigments $ \varGamma^{\prime} $as well as the dephasing rate of the acceptor pigments $ \kappa^{\prime} $ with different pulse width $ \tau_{\rm{p}} $: (a) $ \tau_{{\rm{p}}} = 0.01 V_{0}^{-1} $; (b) $ \tau_{{\rm{p}}} = 0.05 V_{0}^{-1} $; (c) $ \tau_{{\rm{p}}} = 0.1 V_{0}^{-1} $; (d) $ \tau_{{\rm{p}}} = 0.15 V_{0}^{-1} $

    图 7  双脉冲激发时, 激发能传输效率与脉冲间隔$ T $之间的关系

    Fig. 7.  The relationship between the efficiency of the excitation energy transfer $ \eta $ and the pulse interval $ T $ with double-pulse excitation

    图 8  双脉冲激发时, 激发能传输效率$ \eta $与脉冲间隔$ T $以及脉冲宽度$\tau_{{\rm{p}}}$之间的关系

    Fig. 8.  The relationship between the efficiency of the excitation energy transfer $ \eta $ and the pulse interval $ T $ as well as the pulse width $\tau_{\rm{p}}$ with double-pulse excitation

    图 9  供体色素分子间耦合强度$ J_{0} $以及受体色素分子间耦合强度$ g_{0} $不同时激发能传输效率$ \eta $与脉冲间隔$ T $以及脉冲宽度$ \tau_{{\rm{p}}} $之间的关系 (a) $ J_{0} = 0.1 V_{0}, \; g_{0}=0.5 V_{0} $; (b) $ J_{0} = 0.1 V_{0}, \; g_{0}=1.0 V_{0} $; (c) $ J_{0} = 0.2 V_{0}, \; g_{0}=0.5 V_{0} $; (d) $ J_{0} = 0.2 V_{0}, \; g_{0}=1.0 V_{0} $

    Fig. 9.  The relationship between the efficiency of the excitation energy transfer $ \eta $ and the pulse interval $ T $ as well as the pulse width $ \tau_{\rm{p}} $ with different coupling strength of the donor pigments $ J_{0} $ and coupling strength of the acceptor pigments $ g_{0} $: (a) $J_{0} = $$ 0.1 V_{0}, \; g_{0}=0.5 V_{0}$; (b) $ J_{0} = 0.1 V_{0}, \; g_{0}=1.0 V_{0} $; (c) $ J_{0} = 0.2 V_{0}, \; g_{0}=0.5 V_{0} $; (d) $ J_{0} = 0.2 V_{0}, \; g_{0}=1.0 V_{0} $

    图 10  供体色素分子数目$ m $及受体色素分子数目$ n $不同时激发能传输效率$ \eta $与脉冲间隔$ T $以及脉冲宽度$\tau_{{\rm{p}}}$之间的关系 (a) 色素分子数目$ m = 8, \; n = 3 $; (b)色素分子数目$ m = 9, \; n = 3 $; (c)色素分子数目$ m = 16, \; n = 7 $; (d)色素分子数目$m = 16, \; $$ n = 12$

    Fig. 10.  The relationship between the efficiency of the excitation energy transfer $ \eta $ and the pulse interval $ T $ as well as the pulse width $\tau_{\rm{p}}$ with different donor pigments number $ m $ and acceptor pigments number $ n $: (a) $ m = 8, \; n = 3 $; (b) $ m = 9, \; n = 3 $; (c) $ m = $$ 16, \; n = 7 $; (d) $ m = 16, \; n = 12 $

  • [1]

    Cardona T 2018 Heliyon 4 e00548Google Scholar

    [2]

    Van A H, Valkunas L, Van G R 2000 Photosynthetic Excitons (Singapore: World Scientific) pp1-45, 56

    [3]

    May V, Kühn O 2011 Charge and Energy Transfer Dynamics in Molecular Systems (Vol. 2) (Weinheim: Wiley-vch Verlag GmbH & Co. KGaA) pp1-7

    [4]

    Ishizaki A, Calhoun T R, Schlau-Cohen G S, Fleming G R 2010 Phys. Chem. Chem. Phys. 12 7319Google Scholar

    [5]

    Scholes G D, Fleming G R, Olaya-Castro A, Van G R 2011 Nat. Chem. 3 763Google Scholar

    [6]

    Olaya-Castro A, Scholes G D 2011 Int. Rev. Phys. Chem. 30 49Google Scholar

    [7]

    Collini E 2013 Chem. Soc. Rev. 42 4932Google Scholar

    [8]

    Levi F, Mostarda S, Rao F, Mintert F 2015 Rep. Prog. Phys. 78 082001Google Scholar

    [9]

    Olaya-Castro A, Lee C F, Olsen F F, Johnson N F 2008 Phys. Rev. B 78 085115Google Scholar

    [10]

    Fassioli F, Nazir A, Olaya-Castro A 2010 J. Phys. Chem. Lett. 1 2139Google Scholar

    [11]

    Zhang Y P, Li H R, Fang A P, Chen H, Li F L 2013 Chin. Phys. B 22 057104Google Scholar

    [12]

    Plenio M B, Huelga S F 2008 New J. Phys. 10 113019Google Scholar

    [13]

    Mohseni M, Rebentrost P, Lloyd S, Aspuru-Guzik A 2008 J. Chem. Phys. 129 174106Google Scholar

    [14]

    Chen H, Wang X, Han C M, Li H R 2019 J. Phys. B: At. Mol. Opt. Phys. 52 075501Google Scholar

    [15]

    Chan H C, Gamel O E, Fleming G R, Whaley K B 2018 J. Phys. B: At. Mol. Opt. Phys. 51 054002Google Scholar

    [16]

    Barbatti M 2020 J. Chem. Theory Comput. 16 4849Google Scholar

    [17]

    Li H R, Zhang P, Liu Y J, Li F L, Zhu S Y 2013 Phys. Rev. A 87 053831Google Scholar

    [18]

    Zong X L, Song W, Zhou J, Yang M, Yu L B, Cao Z L 2018 Quantum Inf. Process. 17 158

    [19]

    Golubev N V, Kuleff A I 2014 Phys. Rev. A 90 035401Google Scholar

    [20]

    Medina I, Semiao F L 2019 Phys. Rev. A 100 012103Google Scholar

    [21]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) pp248-268

    [22]

    Yang S, Xu D Z, Song Z, Sun C P 2010 J. Chem. Phys. 132 234501Google Scholar

    [23]

    Caruso F, Chin A W, Datta A, Huelga S F, Plenio M B 2009 J. Chem. Phys. 131 105106Google Scholar

  • [1] 曾闵, 罗颖, 江虹. 无线能量传输支持的设备到设备多播能量协作传输机制. 物理学报, 2022, 71(16): 168801. doi: 10.7498/aps.71.20220345
    [2] 杨旭云, 陈永聪, 芦文斌, 朱晓梅, 敖平. 激子极化子共振束缚介导的光合作用能量传输. 物理学报, 2022, 71(23): 234202. doi: 10.7498/aps.71.20221412
    [3] 刘华松, 杨霄, 王利栓, 姜承慧, 刘丹丹, 季一勤, 张锋, 陈德应. SiO2薄膜红外波段介电常数谱的高斯振子模型研究. 物理学报, 2017, 66(5): 054211. doi: 10.7498/aps.66.054211
    [4] 陈卫军, 卢克清, 惠娟利, 张宝菊. 饱和非线性介质中艾里-高斯光束的传输与交互作用. 物理学报, 2016, 65(24): 244202. doi: 10.7498/aps.65.244202
    [5] 喻寅, 贺红亮, 王文强, 卢铁城. 多孔脆性材料对高能量密度脉冲的吸收和抵抗能力. 物理学报, 2015, 64(12): 124302. doi: 10.7498/aps.64.124302
    [6] 刘宝林, 贾维国, 王玉平, 乔海龙, 王旭东, 门克内木乐. 色散条件下各向同性光纤中拉曼增益对光脉冲自陡峭的影响. 物理学报, 2014, 63(21): 214207. doi: 10.7498/aps.63.214207
    [7] 乔小溪, 张向军, 田煜, 孟永钢, 温诗铸. 液晶在电场和剪切耦合作用下的流变学行为. 物理学报, 2013, 62(17): 176101. doi: 10.7498/aps.62.176101
    [8] 周国泉. 高斯涡旋光束的光束传输因子和峭度参数. 物理学报, 2012, 61(17): 174102. doi: 10.7498/aps.61.174102
    [9] 刘冬兵, 程晋明, 祁双喜, 王婉丽, 钱伟新. 部分空间相干和部分光谱相干厄米-高斯脉冲光束的焦场的相干特性. 物理学报, 2012, 61(24): 244202. doi: 10.7498/aps.61.244202
    [10] 李宏宇, 张强, 王春玲, 阳伏林, 赵建华. 空气热储存、光合作用和土壤垂直水分运动对黄土高原地表能量平衡的影响. 物理学报, 2012, 61(15): 159201. doi: 10.7498/aps.61.159201
    [11] 张旨遥, 周晓军, 石胜辉, 梁锐. 矩形谱宽带光抽运的布里渊慢光中脉冲失真的分析. 物理学报, 2010, 59(7): 4694-4700. doi: 10.7498/aps.59.4694
    [12] 陆大全, 胡巍, 钱列加, 范滇元. 等衍射超短脉冲厄米高斯光束在自由空间中的传输及其时空耦合效应. 物理学报, 2009, 58(3): 1655-1661. doi: 10.7498/aps.58.1655
    [13] 张连水, 李晓莉, 王 健, 杨丽君, 冯晓敏, 李晓苇, 傅广生. 光学-射频双光子耦合作用下的电磁诱导透明和电磁诱导吸收. 物理学报, 2008, 57(8): 4921-4926. doi: 10.7498/aps.57.4921
    [14] 季小玲, 汤明玥, 张 涛. 超短脉冲厄米-高斯光束在湍流大气中的光谱移动和光谱跃变. 物理学报, 2007, 56(7): 4281-4288. doi: 10.7498/aps.56.4281
    [15] 庞海龙, 李英骏, 鲁 欣, 张 杰. 基于高斯型脉冲驱动的类镍瞬态X射线激光的流体力学模型. 物理学报, 2006, 55(12): 6382-6386. doi: 10.7498/aps.55.6382
    [16] 何峰, 余玮, 陆培祥, 袁孝, 刘晶儒. 紧聚焦的飞秒激光脉冲在真空中对电子的加速. 物理学报, 2004, 53(1): 165-170. doi: 10.7498/aps.53.165
    [17] 郑仰东, 李俊庆, 李淳飞. 耦合双振子模型手性分子的微观参量对和频过程的影响. 物理学报, 2002, 51(6): 1279-1285. doi: 10.7498/aps.51.1279
    [18] 徐在新, 朱本源. 具有混合作用的U(1)模型的广义Villain分析. 物理学报, 1988, 37(8): 1326-1332. doi: 10.7498/aps.37.1326
    [19] 沈学础, 褚君浩. CdxHg1-xTe混晶的远红外反射光谱和多振子模型. 物理学报, 1985, 34(1): 56-64. doi: 10.7498/aps.34.56
    [20] 鲍城志. 脉冲波沿多导线传输系统传播的矩阵分析. 物理学报, 1965, 21(1): 171-190. doi: 10.7498/aps.21.171
计量
  • 文章访问数:  2871
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-22
  • 修回日期:  2022-02-14
  • 上网日期:  2022-02-21
  • 刊出日期:  2022-05-20

/

返回文章
返回