搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

色散条件下各向同性光纤中拉曼增益对光脉冲自陡峭的影响

刘宝林 贾维国 王玉平 乔海龙 王旭东 门克内木乐

引用本文:
Citation:

色散条件下各向同性光纤中拉曼增益对光脉冲自陡峭的影响

刘宝林, 贾维国, 王玉平, 乔海龙, 王旭东, 门克内木乐

Effect of Raman gain on the self-steepening characteristic in isotropic fibers

Liu Bao-Lin, Jia Wei-Guo, Wang Yu-Ping, Qiao Hai-Long, Wang Xu-Dong, Ke Neimule
PDF
导出引用
  • 基于光脉冲所满足的慢变函数,详细推导了包含拉曼增益的高阶非线性薛定谔方程,在考虑色散的条件下,运用分步傅里叶方法对其数值分析,进而模拟仿真了拉曼增益对高斯脉冲在各向同性光纤中传播时自陡峭效应的影响,并与不考虑拉曼增益的自陡峭效应作比较,从而得出拉曼增益在不同条件下对高斯脉冲自陡峭效应的具体影响方式. 结果表明,拉曼增益会影响高斯脉冲的展宽、脉冲峰值衰减以及在前后沿的振荡,其影响程度与具体的自陡峭参数、脉冲功率和色散系数的大小有关.
    Under the condition that the light pulses meet the slowly varying function pulses, the higher-order nonlinear Schrödinger equation has been deduced by taking into consideration the Raman gain. The linear operator and nonlinear operator specific expressions are obtained using split-step Fourier numerical method. The Raman gain on the self-steepening of the Gaussian pulse has been simulated and then the result is compared with the self-steepening effect without taking into consideration the Raman gain when the pulse propagate in the isotropic optical fiber. Raman gain specific impact on the self-steepening of the Gaussian pulse has been obtained under different conditions. Results show that the Raman gain may affect the Gaussian pulse broadening, pulse peak attenuation as well as the oscillation of the edge. These influences depend on the parameters of self-steepening, input power, and dispersion coefficient.
    • 基金项目: 国家自然科学基金(批准号:61167004)和内蒙古自然基金(批准号:2014MS0104)资助的项目.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61167004) and the Natural Science Foundation of Inner Mongolia, China (Grant No. 2014MS0104).
    [1]

    Agrawal G P 2002 Nonlinear Fiber Optics Fourth Edition 2nd ed. (Boston:Academic Press) p483

    [2]

    Jia W G, Qiao L R, Wang X Y 2012 Acta Phys. Sin. 61 094215 (in Chinese) [贾维国, 乔丽荣, 王旭颖 2012 物理学报 61 094215]

    [3]

    Wen S C, Xiang Y J, Su W H 2006 Proceedings of High-Power Lasers and Applications 1568

    [4]

    Ostrovskii L A 1967 Sov. Phys. JETP 24 797

    [5]

    Zhong X Q, Tang T T, Xiang A P, Cheng K 2011 Optics Communications 284 4727

    [6]

    Mishra M, Konar S 2008 Progress In Electromagnetics Research 78 301

    [7]

    Ramprasad A V, Meenakshi M 2006 IEEE 10(5) 26

    [8]

    Kibler B, Dudley J M, Coen S 2005 Appl. Phys. B 81 337

    [9]

    Wang X Y, Jia W G, Yin J Q 2011 Acta Photonica Sinica 06(3) 06001 (in Chinese) [王旭颖, 贾维国, 尹建全2011 光学学报06(3) 06001]

    [10]

    Song X Y, Wen S C, Dai X Y 2008 Acta Photonice. Sinice 07(4) 1314 (in Chinese) [宋小燕, 文双春, 戴小玉2008光子学报07(4) 1314]

    [11]

    Jia W G, Yang X Y 2005 Acta Phys. Sin. 54 1053 (in Chinese) [贾维国, 杨性愉 2005 物理学报 54 1053]

    [12]

    Zhang Y D, Fan B H, Yuan P 2004 Chin. Phys. Lett. 21 87

    [13]

    Moll K D, Gaeta A L 2003 Physical Review Letters 2 9902

    [14]

    Anderson D, Lisak M 1983 Phys. Rev. A 27 1393

    [15]

    Jeffrey Moses, Wise F W 2006 Phys. Rev. Lett. 07(5) 3903

    [16]

    Jia W G, Zhou Y Y, Han Y M 2009 Acta Phys. Sin. 58 6323 (in Chinese) [贾维国, 周彦勇, 韩永明 2009 物理学报 58 6323]

    [17]

    Benoit Barviau, Bertrand Kibler, Antonio Picozzi 2009 Phys. Rev. Lett. 06 3840

    [18]

    Jia W G, Qiao L R, Wang X Y 2012 Acta Phys. Sin. 61 194209 (in Chinese) [贾维国, 乔丽荣, 王旭颖 2012 物理学报 61 194209]

    [19]

    Zhong X Q, Cheng K, Xiang A P 2013 Chin. Phys. B 22 034205

    [20]

    Yu X D, Meng Z M, Zhang J 2013 Chin. Phys. B 22 094204

    [21]

    Wang F, Jiang H B, Gong Q H 2014 Chin. Phys. B 23 014201

  • [1]

    Agrawal G P 2002 Nonlinear Fiber Optics Fourth Edition 2nd ed. (Boston:Academic Press) p483

    [2]

    Jia W G, Qiao L R, Wang X Y 2012 Acta Phys. Sin. 61 094215 (in Chinese) [贾维国, 乔丽荣, 王旭颖 2012 物理学报 61 094215]

    [3]

    Wen S C, Xiang Y J, Su W H 2006 Proceedings of High-Power Lasers and Applications 1568

    [4]

    Ostrovskii L A 1967 Sov. Phys. JETP 24 797

    [5]

    Zhong X Q, Tang T T, Xiang A P, Cheng K 2011 Optics Communications 284 4727

    [6]

    Mishra M, Konar S 2008 Progress In Electromagnetics Research 78 301

    [7]

    Ramprasad A V, Meenakshi M 2006 IEEE 10(5) 26

    [8]

    Kibler B, Dudley J M, Coen S 2005 Appl. Phys. B 81 337

    [9]

    Wang X Y, Jia W G, Yin J Q 2011 Acta Photonica Sinica 06(3) 06001 (in Chinese) [王旭颖, 贾维国, 尹建全2011 光学学报06(3) 06001]

    [10]

    Song X Y, Wen S C, Dai X Y 2008 Acta Photonice. Sinice 07(4) 1314 (in Chinese) [宋小燕, 文双春, 戴小玉2008光子学报07(4) 1314]

    [11]

    Jia W G, Yang X Y 2005 Acta Phys. Sin. 54 1053 (in Chinese) [贾维国, 杨性愉 2005 物理学报 54 1053]

    [12]

    Zhang Y D, Fan B H, Yuan P 2004 Chin. Phys. Lett. 21 87

    [13]

    Moll K D, Gaeta A L 2003 Physical Review Letters 2 9902

    [14]

    Anderson D, Lisak M 1983 Phys. Rev. A 27 1393

    [15]

    Jeffrey Moses, Wise F W 2006 Phys. Rev. Lett. 07(5) 3903

    [16]

    Jia W G, Zhou Y Y, Han Y M 2009 Acta Phys. Sin. 58 6323 (in Chinese) [贾维国, 周彦勇, 韩永明 2009 物理学报 58 6323]

    [17]

    Benoit Barviau, Bertrand Kibler, Antonio Picozzi 2009 Phys. Rev. Lett. 06 3840

    [18]

    Jia W G, Qiao L R, Wang X Y 2012 Acta Phys. Sin. 61 194209 (in Chinese) [贾维国, 乔丽荣, 王旭颖 2012 物理学报 61 194209]

    [19]

    Zhong X Q, Cheng K, Xiang A P 2013 Chin. Phys. B 22 034205

    [20]

    Yu X D, Meng Z M, Zhang J 2013 Chin. Phys. B 22 094204

    [21]

    Wang F, Jiang H B, Gong Q H 2014 Chin. Phys. B 23 014201

  • [1] 刘俊杰, 盛泉, 王盟, 张钧翔, 耿兴宁, 石争, 王爱华, 史伟, 姚建铨. 基于腔内球差选模产生高阶拉盖尔-高斯模式激光. 物理学报, 2022, 71(1): 014204. doi: 10.7498/aps.71.20211514
    [2] 陈浩, 田建民, 孙雪健, 吕可真, 徐莉华, 李宏荣. 光合作用多色素捕光模型中光激发对能量传输的影响. 物理学报, 2022, 71(10): 104203. doi: 10.7498/aps.71.20211960
    [3] 王楠, 阮双琛. 啁啾脉冲放大激光系统中展宽器色散的解析算法. 物理学报, 2020, 69(2): 024201. doi: 10.7498/aps.69.20191587
    [4] 朱坤占, 贾维国, 张魁, 于宇, 张俊萍. 拉曼增益和自陡峭效应对艾里脉冲传输特性的影响. 物理学报, 2016, 65(7): 074204. doi: 10.7498/aps.65.074204
    [5] 闫青, 贾维国, 于宇, 张俊萍, 门克内木乐. 拉曼增益对高双折射光纤中暗孤子俘获的影响. 物理学报, 2015, 64(18): 184211. doi: 10.7498/aps.64.184211
    [6] 王美洁, 贾维国, 张思远, 门克内木乐, 杨军, 张俊萍. 低双折射光纤中拉曼增益对光偏振态的影响. 物理学报, 2015, 64(3): 034212. doi: 10.7498/aps.64.034212
    [7] 于宇, 贾维国, 闫青, 门克内木乐, 张俊萍. 拉曼散射与自陡峭效应对皮秒孤子传输特性的影响. 物理学报, 2015, 64(5): 054207. doi: 10.7498/aps.64.054207
    [8] 李淑青, 杨光晔, 李禄. Hirota方程的怪波解及其传输特性研究. 物理学报, 2014, 63(10): 104215. doi: 10.7498/aps.63.104215
    [9] 乔海龙, 贾维国, 王旭东, 刘宝林, 门克内木乐, 杨军, 张俊萍. 拉曼增益对双折射光纤中孤子传输特性的影响. 物理学报, 2014, 63(9): 094208. doi: 10.7498/aps.63.094208
    [10] 柴宏宇, 贾维国, 韩凤, 门克内木乐, 杨军, 张俊萍. 保偏光纤中在不同频率区域拉曼效应和参量放大增益谱. 物理学报, 2013, 62(4): 044215. doi: 10.7498/aps.62.044215
    [11] 乔海龙, 贾维国, 刘宝林, 王旭东, 门克内木乐, 杨军, 张俊萍. 拉曼增益对孤子传输特性的影响. 物理学报, 2013, 62(10): 104212. doi: 10.7498/aps.62.104212
    [12] 贾维国, 乔丽荣, 王旭颖, 门克内木乐, 杨军, 张俊萍. 拉曼效应和参量放大共同作用下增益谱特性. 物理学报, 2012, 61(19): 194209. doi: 10.7498/aps.61.194209
    [13] 贾维国, 乔丽荣, 王旭颖, 杨军, 张俊萍, 门克内木乐. 双折射光纤中拉曼效应对参量放大增益谱的影响. 物理学报, 2012, 61(9): 094215. doi: 10.7498/aps.61.094215
    [14] 张旨遥, 周晓军, 石胜辉, 梁锐. 矩形谱宽带光抽运的布里渊慢光中脉冲失真的分析. 物理学报, 2010, 59(7): 4694-4700. doi: 10.7498/aps.59.4694
    [15] 冯 杰, 徐文成, 刘伟慈, 李书贤, 刘颂豪. 高阶色散效应常系数Ginzburg-Landau方程自相似脉冲演化的解析分析. 物理学报, 2008, 57(8): 4978-4983. doi: 10.7498/aps.57.4978
    [16] 孙振红, 柴 路, 张志刚, 王清月, 张伟力, 袁晓东, 黄小军. 马丁内兹型啁啾脉冲放大系统高阶色散的混合补偿. 物理学报, 2005, 54(2): 777-781. doi: 10.7498/aps.54.777
    [17] 迟荣华, 吕可诚, 运 鹏, 李乙钢, 董孝义, 陈文钊, 杨光明, 刘兆兵. 分立式色散补偿拉曼放大器增益特性及非线性现象研究. 物理学报, 2004, 53(2): 456-460. doi: 10.7498/aps.53.456
    [18] 何峰, 余玮, 陆培祥, 袁孝, 刘晶儒. 紧聚焦的飞秒激光脉冲在真空中对电子的加速. 物理学报, 2004, 53(1): 165-170. doi: 10.7498/aps.53.165
    [19] 张喜和, 姚治海, 李晓英, 李春明, 冯克成, 王兆民. 高保偏光纤前方受激拉曼散射光谱特性的研究. 物理学报, 2003, 52(4): 840-843. doi: 10.7498/aps.52.840
    [20] 伍 剑, 娄采云, 李玉华, 高以智. 色散补偿及高阶孤子压缩啁啾光脉冲的理论与实验研究. 物理学报, 1998, 47(4): 619-624. doi: 10.7498/aps.47.619
计量
  • 文章访问数:  5786
  • PDF下载量:  392
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-19
  • 修回日期:  2014-05-20
  • 刊出日期:  2014-11-05

/

返回文章
返回