搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于压缩态光场的量子增强型光学相位追踪

孙小聪 李卫 王雅君 郑耀辉

引用本文:
Citation:

基于压缩态光场的量子增强型光学相位追踪

孙小聪, 李卫, 王雅君, 郑耀辉

Quantum-enhanced optical phase tracking via squeezed state

Sun Xiao-Cong, Li Wei, Wang Ya-Jun, Zheng Yao-Hui
PDF
HTML
导出引用
  • 量子增强型光学相位追踪作为高精度跟踪和测量光学相位的量子光学技术, 在目标定位、量子测距以及相控阵雷达和唢呐等领域中有着重要应用. 本文提出一种基于压缩态光场的量子增强型光学相位追踪协议. 采用中心波长为1064 nm的连续固体激光光源, 结合光学参量振荡器以及Pound-Drever-Hall (PDH)锁定技术, 制备得到初始压缩度为(8.0±0.2) dB的相位压缩态光场. 通过信号调制及解调技术, 实现对压缩态光场相位的控制, 从而实现对光学相位0—2π范围内的量子增强型追踪. 与经典协议相比, 这一协议可以将相位追踪的噪声起伏抑制至散粒噪声基准以下至少6.27 dB, 实现了相位追踪精度至少76.4%的量子增强. 由于到达角估计、相控阵雷达、相控阵唢呐等应用领域对相位测量精度要求极高, 这一协议有望将相位估计的精度提高至突破散粒噪声极限, 为相关领域提供压缩光源, 也为更高精度的空间定位及量子测距技术提供理论和实验基础.
    Quantum-enhanced optical phase tracking is a quantum optical technique for tracking and measuring optical phases with high accuracy. It has important applications in laser interferometry, spectral analysis, and optical measurements. In this study, we propose a quantum-enhanced optical phase tracking protocol based on squeezed state optical fields. By using a continuous solid-state laser source with a central wavelength of 1064 nm, combing second harmonic generation, optical parametric oscillator, and PDH (Pound-Drever-Hall) locking technology, we prepare an initial squeezed state with a squeezing level of (8.0±0.2) dB. Through signal modulation technique and demodulation technique, we control the phase of the squeezed state optical field, thereby realizing the quantum-enhanced tracking of optical phases within the range of 0-2π. Compared with classical protocols, this protocol can suppress the noise fluctuations of phase tracking to at least 6.27 dB below the shot noise limit, improving the phase tracking accuracy by more than 76.4%. Because of the high requirements for phase measurement accuracy in applications such as angle estimation, phased array radar, and phased array sonar, this protocol is expected to improve the phase estimation accuracy beyond the shot noise limit. It provides compressed light sources for relevant fields, laying a theoretical and experimental foundation for higher-precision spatial positioning and quantum ranging techniques. The probe is made of amino acids arranged in a linear chain and joined together by peptide bonds between the carboxyl and amino groups of adjacent amino acid residues. The sequence of amino acids in a protein is determined by a gene and encoded in the genetic code. This can happen either before the protein is used in the cell, or as part of control mechanism.
      通信作者: 郑耀辉, yhzheng@sxu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 62225504, 62027821, 62035015, U22A6003, 12174234, 12274275, 12304403)、国家重点研发计划 (批准号: 2020YFC2200402)和山西省重点研发计划 (批准号: 202102150101003) 资助的课题.
      Corresponding author: Zheng Yao-Hui, yhzheng@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62225504, 62027821, 62035015, U22A6003, 12174234, 12274275, 12304403), the National Key R&D Program of China (Grant No. 2020YFC2200402), and the Key R&D Program of Shanxi Province, China (Grant No. 202102150101003).
    [1]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photon. 5 222Google Scholar

    [2]

    Pezze L, Smerzi A, Oberthaler M K, Schmied R, Treutlein P 2018 Rev. Mod. Phys. 90 035005Google Scholar

    [3]

    Caves C M 1981 Phys. Rev. D 23 1693Google Scholar

    [4]

    Tse M, Yu H, Kijbunchoo N, et al. 2019 Phys. Rev. Lett. 123 231107Google Scholar

    [5]

    Li B B, Blek J, Hoff U B, Madsen L S, Forstner S, Prakash V, Schäfermeier C, Gehring T, Bowen W P, Andersen U L 2018 Optica 5 850Google Scholar

    [6]

    Taylor M A, Janousek J, Daria V, Knittel J, Hage B, Bachor H A, Bowen W P, 2013 Nat. Photon. 7 229Google Scholar

    [7]

    Low G H, Yoder T J, Chuang I L 2015 Phys. Rev. Lett. 114 100801Google Scholar

    [8]

    徐涵, 陈树新, 吴昊, 陈坤, 洪磊 2019 物理学报 68 024204Google Scholar

    Xu H, Chen S X, Wu H, Chen K, Hong L 2019 Acta Phys. Sin. 68 024204Google Scholar

    [9]

    Li T C, Song Y, Fan H Q 2023 Signal Process. 205 108883Google Scholar

    [10]

    Shi C, Wang Y, Salous S, Zhou J, Yan J 2022 IEEE T. Aero. Elec. Sys. 58 2762Google Scholar

    [11]

    Guo X, Breum C R, Borregaard J, Izumi S, Larsen M V, Gehring T, Christandl M, Neergaard-Nielsen J S, Andersen U L 2020 Nat. Phys. 16 281Google Scholar

    [12]

    Xia Y, Li W, Clark W, Hart D, Zhuang Q T, Zhang Z S 2020 Phys. Rev. Lett. 124 150502Google Scholar

    [13]

    Xia Y, Li W, Zhuang Q T, Zhang Z S 2021 Phys. Rev. X 11 021047

    [14]

    Sun X C, Li W, Tian Y H, Li F, Tian L, Wang Y J, Zheng Y H 2022 Photonics Res. 10 2886Google Scholar

    [15]

    田龙, 郑立昂, 张晓莉, 武奕淼, 王庆伟, 秦博, 王雅君, 李卫, 史少平, 陈力荣, 郑耀辉 2023 物理学报 72 148502Google Scholar

    Tian L, Zheng L A, Zhang X L, Wu Y M, Wang Q W, Qin B, Wang Y J, Li W, Shi S P, Chen L R, Zheng Y H 2023 Acta Phys. Sin. 72 148502Google Scholar

    [16]

    张晓莉, 王庆伟, 姚文秀, 史少平, 郑立昂, 田龙, 王雅君, 陈力荣, 李卫, 郑耀辉 2022 物理学报 71 184203Google Scholar

    Zhang X L, Wang Q W, Yao W X, Shi S P, Zheng L A, Tian L, Wang Y J, Chen L R, Li W, Zheng Y H 2022 Acta Phys. Sin. 71 184203Google Scholar

    [17]

    Sun X C, Wang Y J, Tian L J, Zheng Y H, Peng K C 2019 Chin. Opt. Lett. 17 072701Google Scholar

    [18]

    Shi S P, Wang Y J, Yang W H, Zheng Y H, Peng K C 2018 Opt. Lett. 43 5411Google Scholar

    [19]

    Zhou H J, Wang W, Chen C, Zheng Y H 2015 IEEE Sens. J. 15 2101Google Scholar

    [20]

    Zhou H J, Yang W H, Li Z X, Li X F, Zheng Y H 2014 Rev. Sci. Instrum. 85 013111Google Scholar

  • 图 1  基于压缩态光场的QOPT实验装置图. ISO-隔离器; EOM-电光相位调制器; HR-高反镜; PD-光电探测器; BS-分束镜; DBS-双色镜; SHG-二次谐波产生; OPO-光学参量振荡器; PS-移相器; BHD-平衡零拍探测器; BPF-带通滤波器; amp-前置放大器; OSC-示波器

    Fig. 1.  Experimental setup for QOPT protocol via squeezed state. ISO-isolator; EOM-electro-optic phase modulator; HR- high reflectivity mirror; PD-photoelectric detector; BS-beam splitter; DBS-dichroic beam splitter; SHG-second harmonic generator; OPO-optical parametric oscillator; PS-phase shifter; BHD-balanced homodyne detection; BPF-band-pass filter; amp-amplifier; OSC-oscilloscope.

    图 2  无调制相位时示波器采集到的正交位相分量信号 (a) 基于相干光的测量结果; (b) 基于压缩光的测量结果

    Fig. 2.  Phase quadrature components acquiesced by oscillator without phase modulation: (a) Measured results via coherent state; (b) measured results via squeezed state.

    图 3  调制相位为-π/2时示波器采集的正交位相分量 (a) 基于相干光的测量结果; (b) 基于压缩光的测量结果

    Fig. 3.  Phase quadrature components acquiesced by oscillator with phase modulation of -π/2: (a) Measured results via coherent state; (b) measured results via squeezed state.

    图 4  光学相位的追踪结果 (a)调制相位与测量相移的依赖关系; (b) 基于相干光与压缩光两种状态下, 光学相位的噪声方差

    Fig. 4.  Optical phase tracking results: (a) Dependence of measured phase amplitude on phase modulation; (b) noise variance of optical phase via coherent state and squeezed state.

  • [1]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photon. 5 222Google Scholar

    [2]

    Pezze L, Smerzi A, Oberthaler M K, Schmied R, Treutlein P 2018 Rev. Mod. Phys. 90 035005Google Scholar

    [3]

    Caves C M 1981 Phys. Rev. D 23 1693Google Scholar

    [4]

    Tse M, Yu H, Kijbunchoo N, et al. 2019 Phys. Rev. Lett. 123 231107Google Scholar

    [5]

    Li B B, Blek J, Hoff U B, Madsen L S, Forstner S, Prakash V, Schäfermeier C, Gehring T, Bowen W P, Andersen U L 2018 Optica 5 850Google Scholar

    [6]

    Taylor M A, Janousek J, Daria V, Knittel J, Hage B, Bachor H A, Bowen W P, 2013 Nat. Photon. 7 229Google Scholar

    [7]

    Low G H, Yoder T J, Chuang I L 2015 Phys. Rev. Lett. 114 100801Google Scholar

    [8]

    徐涵, 陈树新, 吴昊, 陈坤, 洪磊 2019 物理学报 68 024204Google Scholar

    Xu H, Chen S X, Wu H, Chen K, Hong L 2019 Acta Phys. Sin. 68 024204Google Scholar

    [9]

    Li T C, Song Y, Fan H Q 2023 Signal Process. 205 108883Google Scholar

    [10]

    Shi C, Wang Y, Salous S, Zhou J, Yan J 2022 IEEE T. Aero. Elec. Sys. 58 2762Google Scholar

    [11]

    Guo X, Breum C R, Borregaard J, Izumi S, Larsen M V, Gehring T, Christandl M, Neergaard-Nielsen J S, Andersen U L 2020 Nat. Phys. 16 281Google Scholar

    [12]

    Xia Y, Li W, Clark W, Hart D, Zhuang Q T, Zhang Z S 2020 Phys. Rev. Lett. 124 150502Google Scholar

    [13]

    Xia Y, Li W, Zhuang Q T, Zhang Z S 2021 Phys. Rev. X 11 021047

    [14]

    Sun X C, Li W, Tian Y H, Li F, Tian L, Wang Y J, Zheng Y H 2022 Photonics Res. 10 2886Google Scholar

    [15]

    田龙, 郑立昂, 张晓莉, 武奕淼, 王庆伟, 秦博, 王雅君, 李卫, 史少平, 陈力荣, 郑耀辉 2023 物理学报 72 148502Google Scholar

    Tian L, Zheng L A, Zhang X L, Wu Y M, Wang Q W, Qin B, Wang Y J, Li W, Shi S P, Chen L R, Zheng Y H 2023 Acta Phys. Sin. 72 148502Google Scholar

    [16]

    张晓莉, 王庆伟, 姚文秀, 史少平, 郑立昂, 田龙, 王雅君, 陈力荣, 李卫, 郑耀辉 2022 物理学报 71 184203Google Scholar

    Zhang X L, Wang Q W, Yao W X, Shi S P, Zheng L A, Tian L, Wang Y J, Chen L R, Li W, Zheng Y H 2022 Acta Phys. Sin. 71 184203Google Scholar

    [17]

    Sun X C, Wang Y J, Tian L J, Zheng Y H, Peng K C 2019 Chin. Opt. Lett. 17 072701Google Scholar

    [18]

    Shi S P, Wang Y J, Yang W H, Zheng Y H, Peng K C 2018 Opt. Lett. 43 5411Google Scholar

    [19]

    Zhou H J, Wang W, Chen C, Zheng Y H 2015 IEEE Sens. J. 15 2101Google Scholar

    [20]

    Zhou H J, Yang W H, Li Z X, Li X F, Zheng Y H 2014 Rev. Sci. Instrum. 85 013111Google Scholar

  • [1] 刘婷婷, 杨晓华, 韩亚帅, 王军民. 基于相干反馈的相敏放大器强度差压缩增强研究. 物理学报, 2024, 73(13): 134203. doi: 10.7498/aps.73.20240407
    [2] 韩亚帅, 张啸, 张昭, 屈军, 王军民. 基于级联光参量放大器的碱金属原子跃迁线波段压缩光源分析. 物理学报, 2022, 71(7): 074202. doi: 10.7498/aps.71.20212131
    [3] 王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉. 宽频带压缩态光场光学参量腔的设计. 物理学报, 2020, 69(23): 234204. doi: 10.7498/aps.69.20200890
    [4] 徐涵, 陈树新, 吴昊, 陈坤, 洪磊. 基于数字非线性锁相环的相干态相位估计. 物理学报, 2019, 68(2): 024204. doi: 10.7498/aps.68.20181602
    [5] 温馨, 韩亚帅, 刘金玉, 白乐乐, 何军, 王军民. 低分析频率压缩光的实验制备. 物理学报, 2018, 67(2): 024207. doi: 10.7498/aps.67.20171767
    [6] 张旭苹, 张益昕, 王峰, 单媛媛, 孙振鉷, 胡燕祝. 相位敏感型光时域反射传感系统光学背景噪声的产生机理及其抑制方法. 物理学报, 2017, 66(7): 070707. doi: 10.7498/aps.66.070707
    [7] 黄翔东, 孟天伟, 丁道贤, 王兆华. 前后向子分段相位差频率估计法. 物理学报, 2014, 63(21): 214304. doi: 10.7498/aps.63.214304
    [8] 闫智辉, 贾晓军, 谢常德, 彭堃墀. 利用非简并光学参量振荡腔产生连续变量三色三组分纠缠态. 物理学报, 2012, 61(1): 014206. doi: 10.7498/aps.61.014206
    [9] 冯秀琴, 姚治海, 田作林, 韩秀宇. 简并光学参量振荡器的超混沌控制与周期态同步. 物理学报, 2010, 59(12): 8414-8419. doi: 10.7498/aps.59.8414
    [10] 赵冬梅, 李志刚, 郭龑强, 李刚, 王军民, 张天才. 弱抽运下光学参量过程中压缩真空场的光子统计性质. 物理学报, 2010, 59(9): 6231-6236. doi: 10.7498/aps.59.6231
    [11] 冯秀琴, 沈 柯. 简并光学参量振荡器混沌反控制. 物理学报, 2006, 55(9): 4455-4459. doi: 10.7498/aps.55.4455
    [12] 张百钢, 姚建铨, 路 洋, 纪 峰, 张铁犁, 徐德刚, 王 鹏, 徐可欣. 抽运光角度调谐准相位匹配光学参量振荡器的研究. 物理学报, 2006, 55(3): 1231-1236. doi: 10.7498/aps.55.1231
    [13] 刘竹欣, 方卯发. 压缩相干态通过参量图像放大系统的光学像. 物理学报, 2005, 54(8): 3627-3631. doi: 10.7498/aps.54.3627
    [14] 赵超樱, 谭维翰, 郭奇志. 由非简并光学参量放大系统获得压缩态光所满足的Fokker-Planck方程及其解. 物理学报, 2003, 52(11): 2694-2699. doi: 10.7498/aps.52.2694
    [15] 李永民, 吴迎瑞, 张宽收, 彭墀. 利用准相位匹配光学参量振荡器获得可调谐强度差压缩光. 物理学报, 2003, 52(4): 849-852. doi: 10.7498/aps.52.849
    [16] 李永民, 樊巧云, 张宽收, 谢常德, 彭堃墀. 三共振准相位匹配光学参量振荡器反射抽运场的正交位相压缩. 物理学报, 2001, 50(8): 1492-1495. doi: 10.7498/aps.50.1492
    [17] 王丹翎, 龚旗煌, 汪凯戈, 杨国健. 光学简并参量振荡中的量子非破坏性测量. 物理学报, 2000, 49(8): 1484-1489. doi: 10.7498/aps.49.1484
    [18] 王海, 郜江瑞, 谢常德, 彭堃墀. 非简并光学参量振荡腔非稳特性研究. 物理学报, 1995, 44(10): 1563-1570. doi: 10.7498/aps.44.1563
    [19] 郭弘, 郭光灿. 光场相位统计性质. 物理学报, 1993, 42(6): 918-924. doi: 10.7498/aps.42.918
    [20] 冯克安. 非平衡态相变的两例——光学参量振荡和激光. 物理学报, 1978, 27(3): 322-330. doi: 10.7498/aps.27.322
计量
  • 文章访问数:  2519
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-22
  • 修回日期:  2023-12-01
  • 上网日期:  2023-12-08
  • 刊出日期:  2024-03-05

/

返回文章
返回