搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相敏操控对制备低频双模正交压缩真空态光场的影响

吴炜 赵豪 冯晋霞 李俊 李渊骥 张宽收

引用本文:
Citation:

相敏操控对制备低频双模正交压缩真空态光场的影响

吴炜, 赵豪, 冯晋霞, 李俊, 李渊骥, 张宽收

Effect of phase-sensitive manipulations on generation of low-frequency two-mode orthogonal squeezed vacuum states

Wu Wei, Zhao Hao, Feng Jin-Xia, Li Jun, Li Yuan-Ji, Zhang Kuan-Shou
PDF
HTML
导出引用
  • 本文提出了利用单边带移频光实现非简并光学参量放大器相敏操控的方案, 实验研究了在对非简并光学参量放大器相敏操控过程中, 单边带移频光注入的方案和信号光注入的方案对产生的低频双模正交压缩真空态光场的影响. 实验结果表明, 信号光注入非简并光学参量放大器实现相敏操控过程中, 压缩真空态的压缩度随着注入信号光场功率的增加不断减小直至消失. 而在单边带移频光注入非简并光学参量放大器实现相敏操控过程中, 正交振幅和正交位相压缩真空态的压缩度对注入移频光场的功率变化都不敏感, 压缩度几乎不变. 采用单边带移频光方案实现稳定的相敏操控, 非简并光学参量放大器运转于相敏放大状态达30 min, 获得了稳定输出的低频双模正交压缩真空态光场, 在傅里叶分析频率为200 kHz测量的正交振幅分量的压缩度为(4.1±0.1) dB, 正交位相分量的压缩度为(4.0±0.2) dB.
    Two-mode orthogonal squeezed vacuum states are an important quantum resource for quantum communication, quantum computing, quantum simulation, quantum precision measurement and sensing. It is essential to obtain stable two-mode orthogonal squeezed vacuum states in a low frequency range and compact configurations for practical applications, especially in quantum precision measurement and sensing. Two-mode orthogonal squeezed vacuum states are commonly produced via a subthreshold nondegenerate optical parametric amplifier (NOPA) in a continuous variable system. However, it is a difficult problem that the subthreshold NOPA cavity is phase sensitive manipulated to obtain stable squeezed vacuum states. Previous signal light injecting scheme relies on an injection of a weak light field into the subthreshold NOPA for phase sensitive manipulation. The injected signal light has the same frequency as the generated squeezed vacuum state. Thereby even the weakest injected signal light can introduce large amounts of excessive noise at low frequencies and the squeezing degree of two-mode squeezed vacuum states will be reduced or squeezing cannot be achieved.In this paper, a single sideband frequency shifted light injecting scheme is proposed for phase sensitive manipulation of NOPA. The comparison between the single sideband frequency shifted light injecting scheme and the signal light injecting scheme for realization of phase sensitive manipulation of NOPA is conducted. The effects of the two schemes on the generation of the low-frequency two-mode orthogonal squeezed vacuum state light field are investigated experimentally . The experimental results show that in the signal light injecting scheme for phase sensitive manipulation, the squeezing degree of the two-mode orthogonal squeezed vacuum state continuously decreases until it disappears as the power of injected signal light increases. In the process of phase sensitive manipulation of NOPA by using the single sideband frequency shifted light injecting scheme, the squeezing degree of the two-mode orthogonal squeezed vacuum state does not change with the power of the injected frequency shifted light increasing. Stable phase sensitive manipulation is realized by injecting single sideband frequency shifted light into NOPA. The NOPA is operated in a phase sensitive amplification state for 30 min. Stable low-frequency two-mode orthogonal squeezed vacuum states are obtained. The (4.1 ± 0.1) dB amplitude orthogonal squeezed vacuum states and (4.0 ± 0.2) dB phase orthogonal squeezed vacuum states at a frequency of 200 kHz are generated stably, in a compact NOPA configuration.
      通信作者: 冯晋霞, fengjx@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62175135)和山西省基础研究计划(批准号: 202103021224025)资助的课题.
      Corresponding author: Feng Jin-Xia, fengjx@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62175135) and the Fundamental Research Program of Shanxi Province, China (Grant No. 202103021224025).
    [1]

    Notarnicola M N, Olivares S 2023 Phys. Rev. A 108 022404Google Scholar

    [2]

    Cochrane P T, Ralph T C, Milburn G J 2002 Phys. Rev. A 65 062306Google Scholar

    [3]

    Seok H L, Hyunseok J 2019 Photonics Res. 7 A7Google Scholar

    [4]

    Ralph T C 2011 Phys. Rev. A 84 022339Google Scholar

    [5]

    Sabín C 2023 EPJ Quantum Technol. 10 4Google Scholar

    [6]

    Lawrie B J, Lett P D, Marino A M, Pooser R C 2019 ACS Photonics 6 1307Google Scholar

    [7]

    Ma Y Q, Miao H X, Pang B H, Evans M, Zhao C N, Harms J, Schnabel R, Chen Y B 2017 Nat. Phys. 13 776Google Scholar

    [8]

    蔚娟, 张岩, 吴银花, 杨文海, 闫智辉, 贾晓军 2023 物理学报 72 034202Google Scholar

    Yu J, Zhang Y, Wu Y H, Yang W H, Yan Z H, Jia X J 2023 Acta Phys. Sin. 72 034202Google Scholar

    [9]

    Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706Google Scholar

    [10]

    Takei N, Yonezawa H, Aoki T, Furusawa A 2005 Phys. Rev. Lett. 94 220502Google Scholar

    [11]

    Su X L, Tan A H, Jia X J, Zhang J, Xie C D, Peng K C 2007 Phys. Rev. Lett. 98 070502Google Scholar

    [12]

    Su X L, Hao S H, Deng X W, Ma L Y, Wang M H, Jia X J, Xie C D, Peng K C 2013 Nat. Commun. 4 2828Google Scholar

    [13]

    Su X L, Tian C X, Deng X W, Li Q, Xie C D, Peng K C 2016 Phys. Rev. Lett. 117 240503Google Scholar

    [14]

    周瑶瑶, 刘艳红, 闫智辉, 贾晓军 2021 物理学报 70 104203Google Scholar

    Zhou Y Y, Liu Y H, Yan Z H, Jia X J 2021 Acta Phys. Sin. 70 104203Google Scholar

    [15]

    Ou Z Y, Pereira S F, Kimble H J 1992 Appl. Phys. B 55 265Google Scholar

    [16]

    Zhang Y, Su H, Xie C D, Peng K C 1999 Phys. Lett. A 259 171Google Scholar

    [17]

    Wang Y, Shen H, Jin X L, Su X L, Xie C D, Peng K C 2010 Opt. Express 18 6149Google Scholar

    [18]

    Yap M J , Altin P, McRae T G, Slagmolen B J J, Ward R L, McClelland D E 2019 Nat. Photonics 14 223Google Scholar

    [19]

    Bowen W P, Schnabel R, Lam P K, Ralph T C 2003 Phys. Rev. Lett. 90 043601Google Scholar

    [20]

    Bowen W P, Schnabel R, Lam P K, Ralph T C 2004 Phys. Rev. A 69 012304Google Scholar

    [21]

    Zhang Y, Wang H, Li X Y, Jing J T, Xie C D, Peng K C 2000 Phys. Rev. A 62 023813Google Scholar

    [22]

    Zhang Y, Kasai K, Watanabe M 2002 Phys. Lett. A 297 29Google Scholar

    [23]

    McKenzie K, Grosse N, Bowen W P, Whitcomb S E, Gray M B, McClelland D E, Lam P K 2004 Phys. Rev. Lett. 93 161105Google Scholar

    [24]

    Shang Y N, Yan Z H, Jia X J, Su X L, Xie C D 2011 Chin. Phys. B 20 034209Google Scholar

    [25]

    Su X L 2013 Chin. Phys. B 22 080304Google Scholar

    [26]

    Vahlbruch H, Chelkowski S, Hage B, Franzen A, Danzmann K, Schnabel R 2006 Phys. Rev. Lett. 97 011101Google Scholar

    [27]

    Eberle T, Händchen V, Schnabel R 2013 Opt. Express 21 11546Google Scholar

    [28]

    Zhang W H, Jiao N J, Li R X, Tian L, Wang Y J, Zheng Y H 2021 Opt. Express 29 24315Google Scholar

    [29]

    Wang X B, Hiroshima T, Tomita A, Hayashi M 2007 Phys. Rep. 448 1Google Scholar

  • 图 1  移频光场在双模压缩真空态产生过程中的光场变化示意图

    Fig. 1.  Schematic diagram of frequency shifted light field changes during the generation of dual mode squeezed states.

    图 2  移频技术实现NOPA相敏操控并产生稳定输出的低频双模正交压缩真空态光场

    Fig. 2.  Manipulation of phase sensitive in NOPA and generation of stable output low frequency two mode orthogonal squeezed vacuum states using frequency shift technology.

    图 3  测量的双模正交压缩真空态的噪声功率随注入光场功率的变化

    Fig. 3.  Measured noise powers of two mode quadrature squeezed vacuum states vesus power of injected light field.

    图 4  傅里叶分析频率为200 kHz处测得双模正交压缩真空态的噪声功率 (a) 正交振幅压缩真空态; (b) 正交位相压缩真空态

    Fig. 4.  Measured noise powers of two-mode quadrature squeezed vacuum states at Fourier analysis frequency of 200 kHz: (a) Amplitude quadrature squeezed vacuum states; (b) phase quadrature squeezed vacuum states.

  • [1]

    Notarnicola M N, Olivares S 2023 Phys. Rev. A 108 022404Google Scholar

    [2]

    Cochrane P T, Ralph T C, Milburn G J 2002 Phys. Rev. A 65 062306Google Scholar

    [3]

    Seok H L, Hyunseok J 2019 Photonics Res. 7 A7Google Scholar

    [4]

    Ralph T C 2011 Phys. Rev. A 84 022339Google Scholar

    [5]

    Sabín C 2023 EPJ Quantum Technol. 10 4Google Scholar

    [6]

    Lawrie B J, Lett P D, Marino A M, Pooser R C 2019 ACS Photonics 6 1307Google Scholar

    [7]

    Ma Y Q, Miao H X, Pang B H, Evans M, Zhao C N, Harms J, Schnabel R, Chen Y B 2017 Nat. Phys. 13 776Google Scholar

    [8]

    蔚娟, 张岩, 吴银花, 杨文海, 闫智辉, 贾晓军 2023 物理学报 72 034202Google Scholar

    Yu J, Zhang Y, Wu Y H, Yang W H, Yan Z H, Jia X J 2023 Acta Phys. Sin. 72 034202Google Scholar

    [9]

    Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706Google Scholar

    [10]

    Takei N, Yonezawa H, Aoki T, Furusawa A 2005 Phys. Rev. Lett. 94 220502Google Scholar

    [11]

    Su X L, Tan A H, Jia X J, Zhang J, Xie C D, Peng K C 2007 Phys. Rev. Lett. 98 070502Google Scholar

    [12]

    Su X L, Hao S H, Deng X W, Ma L Y, Wang M H, Jia X J, Xie C D, Peng K C 2013 Nat. Commun. 4 2828Google Scholar

    [13]

    Su X L, Tian C X, Deng X W, Li Q, Xie C D, Peng K C 2016 Phys. Rev. Lett. 117 240503Google Scholar

    [14]

    周瑶瑶, 刘艳红, 闫智辉, 贾晓军 2021 物理学报 70 104203Google Scholar

    Zhou Y Y, Liu Y H, Yan Z H, Jia X J 2021 Acta Phys. Sin. 70 104203Google Scholar

    [15]

    Ou Z Y, Pereira S F, Kimble H J 1992 Appl. Phys. B 55 265Google Scholar

    [16]

    Zhang Y, Su H, Xie C D, Peng K C 1999 Phys. Lett. A 259 171Google Scholar

    [17]

    Wang Y, Shen H, Jin X L, Su X L, Xie C D, Peng K C 2010 Opt. Express 18 6149Google Scholar

    [18]

    Yap M J , Altin P, McRae T G, Slagmolen B J J, Ward R L, McClelland D E 2019 Nat. Photonics 14 223Google Scholar

    [19]

    Bowen W P, Schnabel R, Lam P K, Ralph T C 2003 Phys. Rev. Lett. 90 043601Google Scholar

    [20]

    Bowen W P, Schnabel R, Lam P K, Ralph T C 2004 Phys. Rev. A 69 012304Google Scholar

    [21]

    Zhang Y, Wang H, Li X Y, Jing J T, Xie C D, Peng K C 2000 Phys. Rev. A 62 023813Google Scholar

    [22]

    Zhang Y, Kasai K, Watanabe M 2002 Phys. Lett. A 297 29Google Scholar

    [23]

    McKenzie K, Grosse N, Bowen W P, Whitcomb S E, Gray M B, McClelland D E, Lam P K 2004 Phys. Rev. Lett. 93 161105Google Scholar

    [24]

    Shang Y N, Yan Z H, Jia X J, Su X L, Xie C D 2011 Chin. Phys. B 20 034209Google Scholar

    [25]

    Su X L 2013 Chin. Phys. B 22 080304Google Scholar

    [26]

    Vahlbruch H, Chelkowski S, Hage B, Franzen A, Danzmann K, Schnabel R 2006 Phys. Rev. Lett. 97 011101Google Scholar

    [27]

    Eberle T, Händchen V, Schnabel R 2013 Opt. Express 21 11546Google Scholar

    [28]

    Zhang W H, Jiao N J, Li R X, Tian L, Wang Y J, Zheng Y H 2021 Opt. Express 29 24315Google Scholar

    [29]

    Wang X B, Hiroshima T, Tomita A, Hayashi M 2007 Phys. Rep. 448 1Google Scholar

  • [1] 刘婷婷, 杨晓华, 韩亚帅, 王军民. 基于相干反馈的相敏放大器强度差压缩增强研究. 物理学报, 2024, 73(13): 134203. doi: 10.7498/aps.73.20240407
    [2] 孙凡, 文峰, 武保剑, Tan Ming-Ming, 凌云, 邱昆. 基于双向正交泵浦半导体光放大器结构的全光相位保持幅度再生技术. 物理学报, 2022, 71(20): 204204. doi: 10.7498/aps.71.20220703
    [3] 韩亚帅, 张啸, 张昭, 屈军, 王军民. 基于级联光参量放大器的碱金属原子跃迁线波段压缩光源分析. 物理学报, 2022, 71(7): 074202. doi: 10.7498/aps.71.20212131
    [4] 左冠华, 杨晨, 赵俊祥, 田壮壮, 朱诗尧, 张玉驰, 张天才. 基于参量放大器的铯原子D2线明亮偏振压缩光源的产生. 物理学报, 2020, 69(1): 014207. doi: 10.7498/aps.69.20191009
    [5] 刘奎, 马龙, 苏必达, 李佳明, 孙恒信, 郜江瑞. 基于非简并光学参量放大器产生光学频率梳纠缠态. 物理学报, 2020, 69(12): 124203. doi: 10.7498/aps.69.20200107
    [6] 李娟, 李佳明, 蔡春晓, 孙恒信, 刘奎, 郜江瑞. 优化抽运空间分布实现连续变量超纠缠的纠缠增强. 物理学报, 2019, 68(3): 034204. doi: 10.7498/aps.68.20181625
    [7] 万振菊, 冯晋霞, 成健, 张宽收. 连续变量纠缠态光场在光纤中传输特性的实验研究. 物理学报, 2018, 67(2): 024203. doi: 10.7498/aps.67.20171542
    [8] 马亚云, 冯晋霞, 万振菊, 高英豪, 张宽收. 连续变量1.34 m量子纠缠态光场的实验制备. 物理学报, 2017, 66(24): 244205. doi: 10.7498/aps.66.244205
    [9] 孙志妮, 冯晋霞, 万振菊, 张宽收. 1.5m光通信波段明亮压缩态光场的产生及其Wigner函数的重构. 物理学报, 2016, 65(4): 044203. doi: 10.7498/aps.65.044203
    [10] 尤良芳, 令维军, 李可, 张明霞, 左银燕, 王屹山. 基于单个BBO晶体载波包络相位稳定的高效率光参量放大器. 物理学报, 2014, 63(21): 214203. doi: 10.7498/aps.63.214203
    [11] 严晓波, 杨柳, 田雪冬, 刘一谋, 张岩. 参量放大器腔中光力诱导透明与本征模劈裂性质. 物理学报, 2014, 63(20): 204201. doi: 10.7498/aps.63.204201
    [12] 袁洪春, 徐学翔. 单双模连续压缩真空态及其量子统计性质. 物理学报, 2012, 61(6): 064205. doi: 10.7498/aps.61.064205
    [13] 陈星, 夏云杰. 双模压缩真空态和纠缠相干态的一维势垒散射. 物理学报, 2010, 59(1): 80-86. doi: 10.7498/aps.59.80
    [14] 赵超樱, 谭维翰. 色散效应对光学参量放大器量子起伏特性的影响. 物理学报, 2010, 59(4): 2498-2504. doi: 10.7498/aps.59.2498
    [15] 刘竹欣, 方卯发. 压缩相干态通过参量图像放大系统的光学像. 物理学报, 2005, 54(8): 3627-3631. doi: 10.7498/aps.54.3627
    [16] 宋同强. 利用双模压缩真空态实现量子态的远程传输. 物理学报, 2004, 53(10): 3358-3362. doi: 10.7498/aps.53.3358
    [17] 赵超樱, 谭维翰, 郭奇志. 由非简并光学参量放大系统获得压缩态光所满足的Fokker-Planck方程及其解. 物理学报, 2003, 52(11): 2694-2699. doi: 10.7498/aps.52.2694
    [18] 孙涛, 黄锦圣, 张伟力, 王清月. 输出13.5fs激光脉冲的非共线式光参量放大器. 物理学报, 2002, 51(10): 2281-2285. doi: 10.7498/aps.51.2281
    [19] 邓和. 终态寿命对钕玻璃激光放大器的影响. 物理学报, 1979, 28(3): 377-382. doi: 10.7498/aps.28.377
    [20] 沈光铭, 高天明, 茅经怀. 基波激励和次谐波激励参量放大器特性的分析. 物理学报, 1963, 19(6): 384-397. doi: 10.7498/aps.19.384
计量
  • 文章访问数:  2566
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-07
  • 修回日期:  2023-12-06
  • 上网日期:  2023-12-12
  • 刊出日期:  2024-03-05

/

返回文章
返回