搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1.5m光通信波段明亮压缩态光场的产生及其Wigner函数的重构

孙志妮 冯晋霞 万振菊 张宽收

引用本文:
Citation:

1.5m光通信波段明亮压缩态光场的产生及其Wigner函数的重构

孙志妮, 冯晋霞, 万振菊, 张宽收

Generation of bright squeezed light at 1.5 m telecommunication band and its Wigner function reconstruction

Sun Zhi-Ni, Feng Jin-Xia, Wan Zhen-Ju, Zhang Kuan-Shou
PDF
导出引用
  • 1.5 m光通信波段非经典光场在光纤中有着极低的传输损耗, 因而是基于光纤的实用化连续变量量子信息研究的重要资源. 本文利用周期极化磷酸氧钛晶体构成的半整块结构简并光学参量放大器, 实验获得了连续变量1.5 m光通信波段的明亮压缩态光场. 光学参量放大器的阈值功率为230 mW. 当780 nm抽运光场功率为110 mW, 1.5 m注入信号光场功率为3 mW时, 连续变量1.5 m明亮正交位相压缩态光场的压缩度达4.7 dB. 进而利用时域零拍探测系统测量压缩态, 采用量子层析技术重构了该明亮正交位相压缩态光场的Wigner准概率分布函数.
    The squeezed light at 1.5 m telecommunication band has been considered as an important resource of continuous variable (CV) practical fiber-based quantum information research because it is the lowest loss in fiber. A bright phase quadrature squeezed light for continuous variable at 1.5 m is demonstrated from a semi-monolithic degenerate optical parametric amplifier (DOPA) based on a periodically poled KTiOPO4 (PPKTP) crystal. The laser source is a continuous wave (CW) single-frequency fiber laser at 1.5 m, which is sent through a ring mode cleaner (MC) as a preliminary spatial and noise filter. And then the main portion of the output from the MC is used for external-enhanced second harmonic generation to obtain a CW single-frequency low noise laser at 780 nm that acts as the pump of the DOPA. The residual light of the output from the MC at 1.5 m is used as the injected signal light of the DOPA and the local oscillator (LO) of a balanced homodyne detector (BHD) system. The DOPA is built by using a type-I PPKTP crystal and a piezo-actuated output coupler and works in double-resonance case with a threshold power of 230 mW. When the DOPA is operating in the state of amplification, the output down-conversion field should be a bright phase quadrature squeezed light, where the relative phase between the pump and the injected signal is locked to 0. A 4.7 dB bright phase quadrature squeezed light is measured by the BHD system with the pump light of 110 mW and the injected signal of 3 mW, where the relative phase between the down-conversion field and the LO is locked to 0. Our measurement is limited by the optical losses and the detection efficiency. We have taken into account the detection efficiency of 86.6%, and the actual squeezing of the squeezed light being 6.3 dB. Moreover, because it is so crucial a process for CV quantum information system that the transmission and evolution of the CV squeezed states in the fiber may reappear in all information of the quantum states in the phase space, then the bright squeezed light is detected by a BHD system in the time domain, and its Wigner quasi-probability distribution function can be reconstructed by using a quantum tomographic technique. Furthermore, the bright squeezed state at 1.5 m is an ideal source for fiber-based long-distance quantum information because of its stability and bright mean field.
      通信作者: 冯晋霞, fengjx@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61227015, 11204167, 61405109)和山西省回国留学人员科研资助项目(批准号: 2012-003) 资助的课题.
      Corresponding author: Feng Jin-Xia, fengjx@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61227015, 11204167, 61405109) and the Shanxi Scholarship Council, China (Grant No. 2012-003).
    [1]

    Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein A J, Mavalvala N 2008 Nat. Phys. 4 472

    [2]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1300

    [3]

    Xiao M, Wu LA, Kimble H J 1987 Phys. Rev. Lett. 59 278

    [4]

    Appel J, Figueroa E, Korystov D, Lobino M, Lvovsky A I 2008 Phys. Rev. Lett. 100 093602

    [5]

    Dantan A, Pinard M 2004 Phys. Rev. A 69 043810

    [6]

    Furusawa A, Serensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706

    [7]

    Zhai Z H, Li Y M, Wang S K, Guo J, Zhang T C, Gao J R 2005 Acta Phys. Sin. 54 2710 (in Chinese) [翟泽辉, 李永明, 王少凯, 郭娟, 张天才, 郜江瑞 2005 物理学报 54 2710]

    [8]

    Jing J T, Zhang J, Yan Y, Zhao F G, Xie C D, Peng K C 2003 Phys. Rev. Lett. 90 167903

    [9]

    Lee H, Ahn D, Hwang S W 2002 Phys. Rev. A 66 024304

    [10]

    Moskal S, Bednarek S, Adamowski J 2007 Phys. Rev. A 76 032302

    [11]

    Schmitt-Manderbach T, Weier H, Furst M, Ursin R, Tiefenbacher F, Scheidl T, Perdigues J, Sodnik Z, Kursiefer C, Rarity J G, Zeilinger A, Weinfurter H 2007 Phys. Rev. Lett. 98 010504

    [12]

    Wu L A, Kimble H J, Hall J H, Wu H F 1986 Phys. Rev. Lett. 57 2520

    [13]

    Wu L A, Xiao M, Kimble H J 1987 J. Opt. Soc. Am. B 4 1465

    [14]

    Peng K C, Pan Q, Wang H, Zhang Y, Su H, Xie C D 1998 Appl. Phys. B 66 755

    [15]

    Breitenbach G, Muler T, Pereira S F, Poizat J P, Schiller S, Mlynek J 1995 J. Opt. Soc. Am. B 12 2304

    [16]

    Lam P K, Ralph T C, Buchler B C, Mcclelland D E, Bachor H A, Gao J 1999 J. Opt. B: Quan. Semiclass Opt. 1 469

    [17]

    Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321

    [18]

    Eberle T, Hndchen V, Duhme J, Franz T, Werner R F, Schnabel R 2011 Phys. Rev. A 83 052329

    [19]

    Schiller S, Breitenbach G, Pereira S F, Paschotta R, White A G, Mlynek J 1995 Proc. SPIE 2378 91

    [20]

    Schneider K, Bruchmeier R, HanSen H, Schiller S, Mlynek J 1996 Opt. Lett. 21 1396

    [21]

    Ma H L, Wei D, Ye C G, Zhang J, Peng K C 2005 Acta Phys. Sin. 54 3637 (in Chinese) [马红亮, 卫栋, 叶晨光, 张靖, 彭堃墀 2005 物理学报 54 3637]

    [22]

    Feng J X, Tian X T, Li Y M, Zhang K S 2008 Appl. Phys. Lett. 92 221102

    [23]

    Liu Q, Feng J X, Li H, Jiao Y C, Zhang K S 2012 Chin. Phys. B 21 104204

    [24]

    Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 19 25763

    [25]

    Wu Z Q, Zhou H J, Wang Y J, Zheng Y H 2013 Acta Sin. Quan. Opt. 19 1 (in Chinese) [邬志强, 周海军, 王雅君, 郑耀辉2013 量子光学学报 19 1 ]

    [26]

    Black E D 2001 Am. J. Phys. 69 79

    [27]

    Li H, Feng J X, Wan Z J, Zhang K S 2014 Chin. J. Lasers 41 0502003 (in Chinese) [李宏, 冯晋霞, 万振菊, 张宽收 2014 中国激光 41 0502003]

    [28]

    Wigner E 1932 Phys. Rev. 40 749

    [29]

    Fano U 1957 Rev. Mod. Phys. 29 74

    [30]

    Vogel K, Risken H 1989 Phys. Rev. A 40 2847

    [31]

    Schiller S, Breitenbach G, Pereira S F, Muller T, Mlynek J 1996 Phys. Rev. Lett. 77 2933

    [32]

    Lvovsky A I, Hansen H, Aichele T, Benson O, Mlynek J, Schiller S 2001 Phys. Rev. Lett. 87 050402

    [33]

    Ye C G, Zhang J 2008 Acta Phys. Sin. 57 6962 (in Chinese) [叶晨光, 张靖 2008 物理学报 57 6962]

  • [1]

    Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein A J, Mavalvala N 2008 Nat. Phys. 4 472

    [2]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1300

    [3]

    Xiao M, Wu LA, Kimble H J 1987 Phys. Rev. Lett. 59 278

    [4]

    Appel J, Figueroa E, Korystov D, Lobino M, Lvovsky A I 2008 Phys. Rev. Lett. 100 093602

    [5]

    Dantan A, Pinard M 2004 Phys. Rev. A 69 043810

    [6]

    Furusawa A, Serensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706

    [7]

    Zhai Z H, Li Y M, Wang S K, Guo J, Zhang T C, Gao J R 2005 Acta Phys. Sin. 54 2710 (in Chinese) [翟泽辉, 李永明, 王少凯, 郭娟, 张天才, 郜江瑞 2005 物理学报 54 2710]

    [8]

    Jing J T, Zhang J, Yan Y, Zhao F G, Xie C D, Peng K C 2003 Phys. Rev. Lett. 90 167903

    [9]

    Lee H, Ahn D, Hwang S W 2002 Phys. Rev. A 66 024304

    [10]

    Moskal S, Bednarek S, Adamowski J 2007 Phys. Rev. A 76 032302

    [11]

    Schmitt-Manderbach T, Weier H, Furst M, Ursin R, Tiefenbacher F, Scheidl T, Perdigues J, Sodnik Z, Kursiefer C, Rarity J G, Zeilinger A, Weinfurter H 2007 Phys. Rev. Lett. 98 010504

    [12]

    Wu L A, Kimble H J, Hall J H, Wu H F 1986 Phys. Rev. Lett. 57 2520

    [13]

    Wu L A, Xiao M, Kimble H J 1987 J. Opt. Soc. Am. B 4 1465

    [14]

    Peng K C, Pan Q, Wang H, Zhang Y, Su H, Xie C D 1998 Appl. Phys. B 66 755

    [15]

    Breitenbach G, Muler T, Pereira S F, Poizat J P, Schiller S, Mlynek J 1995 J. Opt. Soc. Am. B 12 2304

    [16]

    Lam P K, Ralph T C, Buchler B C, Mcclelland D E, Bachor H A, Gao J 1999 J. Opt. B: Quan. Semiclass Opt. 1 469

    [17]

    Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321

    [18]

    Eberle T, Hndchen V, Duhme J, Franz T, Werner R F, Schnabel R 2011 Phys. Rev. A 83 052329

    [19]

    Schiller S, Breitenbach G, Pereira S F, Paschotta R, White A G, Mlynek J 1995 Proc. SPIE 2378 91

    [20]

    Schneider K, Bruchmeier R, HanSen H, Schiller S, Mlynek J 1996 Opt. Lett. 21 1396

    [21]

    Ma H L, Wei D, Ye C G, Zhang J, Peng K C 2005 Acta Phys. Sin. 54 3637 (in Chinese) [马红亮, 卫栋, 叶晨光, 张靖, 彭堃墀 2005 物理学报 54 3637]

    [22]

    Feng J X, Tian X T, Li Y M, Zhang K S 2008 Appl. Phys. Lett. 92 221102

    [23]

    Liu Q, Feng J X, Li H, Jiao Y C, Zhang K S 2012 Chin. Phys. B 21 104204

    [24]

    Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 19 25763

    [25]

    Wu Z Q, Zhou H J, Wang Y J, Zheng Y H 2013 Acta Sin. Quan. Opt. 19 1 (in Chinese) [邬志强, 周海军, 王雅君, 郑耀辉2013 量子光学学报 19 1 ]

    [26]

    Black E D 2001 Am. J. Phys. 69 79

    [27]

    Li H, Feng J X, Wan Z J, Zhang K S 2014 Chin. J. Lasers 41 0502003 (in Chinese) [李宏, 冯晋霞, 万振菊, 张宽收 2014 中国激光 41 0502003]

    [28]

    Wigner E 1932 Phys. Rev. 40 749

    [29]

    Fano U 1957 Rev. Mod. Phys. 29 74

    [30]

    Vogel K, Risken H 1989 Phys. Rev. A 40 2847

    [31]

    Schiller S, Breitenbach G, Pereira S F, Muller T, Mlynek J 1996 Phys. Rev. Lett. 77 2933

    [32]

    Lvovsky A I, Hansen H, Aichele T, Benson O, Mlynek J, Schiller S 2001 Phys. Rev. Lett. 87 050402

    [33]

    Ye C G, Zhang J 2008 Acta Phys. Sin. 57 6962 (in Chinese) [叶晨光, 张靖 2008 物理学报 57 6962]

  • [1] 许凡, 赵妍, 吴宇航, 王文驰, 金雪莹. 高阶色散下双耦合微腔中克尔光频梳的稳定性和非线性动力学分析. 物理学报, 2022, 71(18): 184204. doi: 10.7498/aps.71.20220691
    [2] 郭绮琪, 陈溢杭. 基于介电常数近零模式与间隙表面等离激元强耦合的增强非线性光学效应. 物理学报, 2021, 70(18): 187303. doi: 10.7498/aps.70.20210290
    [3] 李海鹏, 周佳升, 吉炜, 杨自强, 丁慧敏, 张子韬, 沈晓鹏, 韩奎. 边界对石墨烯量子点非线性光学性质的影响. 物理学报, 2021, 70(5): 057801. doi: 10.7498/aps.70.20201643
    [4] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器. 物理学报, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [5] 白瑞雪, 杨珏晗, 魏大海, 魏钟鸣. 低维半导体材料在非线性光学领域的研究进展. 物理学报, 2020, 69(18): 184211. doi: 10.7498/aps.69.20200206
    [6] 徐昕, 金雪莹, 胡晓鸿, 黄新宁. 光学微腔中倍频光场演化和光谱特性. 物理学报, 2020, 69(2): 024203. doi: 10.7498/aps.69.20191294
    [7] 刘奎, 马龙, 苏必达, 李佳明, 孙恒信, 郜江瑞. 基于非简并光学参量放大器产生光学频率梳纠缠态. 物理学报, 2020, 69(12): 124203. doi: 10.7498/aps.69.20200107
    [8] 李娟, 李佳明, 蔡春晓, 孙恒信, 刘奎, 郜江瑞. 优化抽运空间分布实现连续变量超纠缠的纠缠增强. 物理学报, 2019, 68(3): 034204. doi: 10.7498/aps.68.20181625
    [9] 万振菊, 冯晋霞, 成健, 张宽收. 连续变量纠缠态光场在光纤中传输特性的实验研究. 物理学报, 2018, 67(2): 024203. doi: 10.7498/aps.67.20171542
    [10] 马亚云, 冯晋霞, 万振菊, 高英豪, 张宽收. 连续变量1.34 m量子纠缠态光场的实验制备. 物理学报, 2017, 66(24): 244205. doi: 10.7498/aps.66.244205
    [11] 邓俊鸿, 李贵新. 非线性光学超构表面. 物理学报, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [12] 严晓波, 杨柳, 田雪冬, 刘一谋, 张岩. 参量放大器腔中光力诱导透明与本征模劈裂性质. 物理学报, 2014, 63(20): 204201. doi: 10.7498/aps.63.204201
    [13] 陆晶晶, 冯苗, 詹红兵. 氧化石墨烯/壳聚糖复合薄膜材料的制备及其非线性光限幅效应的研究. 物理学报, 2013, 62(1): 014204. doi: 10.7498/aps.62.014204
    [14] 赵超樱, 谭维翰. 色散效应对光学参量放大器量子起伏特性的影响. 物理学报, 2010, 59(4): 2498-2504. doi: 10.7498/aps.59.2498
    [15] 叶晨光, 张 靖. 利用PPKTP晶体产生真空压缩态及其Wigner准概率分布函数的量子重构. 物理学报, 2008, 57(11): 6962-6967. doi: 10.7498/aps.57.6962
    [16] 黄晓明, 陶丽敏, 郭雅慧, 高 云, 王传奎. 一种新型双共轭链分子非线性光学性质的理论研究. 物理学报, 2007, 56(5): 2570-2576. doi: 10.7498/aps.56.2570
    [17] 杨 光, 陈正豪. 掺Ag纳米颗粒的BaTiO3复合薄膜的非线性光学特性. 物理学报, 2007, 56(2): 1182-1187. doi: 10.7498/aps.56.1182
    [18] 梁小蕊, 赵 波, 周志华. 几种香豆素衍生物分子的二阶非线性光学性质的从头算研究. 物理学报, 2006, 55(2): 723-728. doi: 10.7498/aps.55.723
    [19] 张明昕, 吴克琛, 刘彩萍, 韦永勤. 密度泛函交换关联势与过渡金属化合物光学非线性的计算研究. 物理学报, 2005, 54(4): 1762-1770. doi: 10.7498/aps.54.1762
    [20] 周文远, 田建国, 臧维平, 张春平, 张光寅, 王肇圻. 厚非线性介质瞬态热光非线性效应的研究. 物理学报, 2002, 51(11): 2623-2628. doi: 10.7498/aps.51.2623
计量
  • 文章访问数:  3657
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-15
  • 修回日期:  2015-10-26
  • 刊出日期:  2016-02-05

1.5m光通信波段明亮压缩态光场的产生及其Wigner函数的重构

  • 1. 量子光学与光量子器件国家重点实验室, 山西大学光电研究所, 太原 030006
  • 通信作者: 冯晋霞, fengjx@sxu.edu.cn
    基金项目: 国家自然科学基金(批准号: 61227015, 11204167, 61405109)和山西省回国留学人员科研资助项目(批准号: 2012-003) 资助的课题.

摘要: 1.5 m光通信波段非经典光场在光纤中有着极低的传输损耗, 因而是基于光纤的实用化连续变量量子信息研究的重要资源. 本文利用周期极化磷酸氧钛晶体构成的半整块结构简并光学参量放大器, 实验获得了连续变量1.5 m光通信波段的明亮压缩态光场. 光学参量放大器的阈值功率为230 mW. 当780 nm抽运光场功率为110 mW, 1.5 m注入信号光场功率为3 mW时, 连续变量1.5 m明亮正交位相压缩态光场的压缩度达4.7 dB. 进而利用时域零拍探测系统测量压缩态, 采用量子层析技术重构了该明亮正交位相压缩态光场的Wigner准概率分布函数.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回