搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

库的量子关联相干辅助系统能量提取的研究

李海 邹健 邵彬 陈雨 华臻

引用本文:
Citation:

库的量子关联相干辅助系统能量提取的研究

李海, 邹健, 邵彬, 陈雨, 华臻

Study on energy extraction assisted with quantum correlated coherence in bath

Li Hai, Zou Jian, Shao Bin, Chen Yu, Hua Zhen
PDF
HTML
导出引用
  • 基于单模微腔与二能级原子系综(库)构成的混合动力学模型, 探索了非平衡库中量子关联相干(quantum correlated coherence, QCC) [Tan K C, et al. 2016 Phys. Rev. A 94, 022329])对系统动力学的影响. 推导了量子关联相干库下系统演化的动力学方程. 借助于含QCC的类GHZ库及其对应的参考库, 清晰地揭示了非平衡库中QCC扮演着热力学资源的角色——能够有效辅助系统从库中提取更多能量. 同时, 结合解析与数值模拟方法研究了类GHZ库的有效温度和系统与库间的耦合参数对QCC能量效应的影响. 研究发现, QCC对腔场的能量贡献不仅依赖于库的有效温度, 而且也和系统与库间的耦合参数有关. 这与二能级原子构成的传统的热库的情况(腔场从热库中提取的能量仅仅依赖于库的有效温度即二能级原子的热布局)完全不同. 此外, 研究发现QCC可视作一类优质的热力学资源, 在特定条件下其对系统的能量贡献远大于原子热布局的贡献. 因此, QCC将是高输出功率或高效率量子热机设计中的一类重要燃料.
    Based on a hybrid model of a single-mode microcavity system plus an ensemble of two-level atoms (TLAs), we investigate the effect of quantum correlated coherence (QCC) [Tan K C, et al. 2016 Phys. Rev. A 94, 022329] of bath on the dynamic behaviors of system. The dynamic equations of system for a general bath with QCC have been derived. With the help of the GHZ-like state with QCC and its reference state, the role of QCC as a thermodynamic resource has been clearly shown where QCC could be used to enhance the system's energy. Meanwhile, combining with the analytical and numerical simulation methods, the influences of effective temperature of $ GHZ $-like bath and the coupling strength between the system and the bath on the energy effect of QCC have been studied. We find that the energy contribution of QCC to the cavity field relies not only on the effective temperature of bath but also on the coupling strength. That is completely different from the case of traditional thermal bath where the energy captured by the cavity from the bath only depends on the bath temperature, i.e., the thermal distribution of TLAs. Moreover, several interesting phenomena, in the paper, have been shown: 1) the higher of the effective temperature of bath, the larger of the cavity's energy extracted from the QCC of bath; 2) under the fixed effective temperature of bath, the smaller of the coupling strength the larger of the maximal extractable energy from QCC of bath; 3) there exists the trade-off between the cavity's energy and the capability of cavity capturing the energy of TLAs entering the cavity, i.e., the cavity's energy extracted from each TLA crossing the cavity always decreases as the energy of cavity increases; 4) the energy contribution of QCC of bath to cavity is beyond the one of the thermal distribution of TLAs in bath, and it could become more prominent when the coupling strength is taken the smaller value, which also means that in the case of weak coupling strength it is the QCC of bath not the thermal distribution of bath dominating the cavity's energy. Thus, the QCC of bath could be viewed as a kind of high quality thermodynamic resource. It has the potential applications in the design of a quantum engine with high output power or efficiency, and the enhancement of charging speed of quantum battery. Our investigation is beneficial to the further understanding of quantum coherence in quantum thermodynamic regime.
      通信作者: 李海, shenghuo2003@126.com ; 邹健, zoujian@bit.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11547036, 11775019, 11375025, 61472227)、贵州省教育厅基金(批准号: 090122)和山东工商学院博士启动基金(批准号: BS201418)资助的课题.
      Corresponding author: Li Hai, shenghuo2003@126.com ; Zou Jian, zoujian@bit.edu.cn
    • Funds: Project supported by the National Science Foundation of China (Grants Nos. 11547036, 11775019, 11375025, 61472227), the Education Department Foundation of Guizhou Province of China (Grants No. 090122), and the Ph.D. Research Startup Foundation of Shandong Technology and Business University, China (Grant No. BS201418).
    [1]

    García-Díaz M, Egloff D, Plenio M B 2016 Quant. Inf. Comput. 16 1282

    [2]

    Linden N, Popescu S, Skrzypczyk P 2010 Phys. Rev. Lett. 105 130401Google Scholar

    [3]

    Ficek Z, Swain S 2005 Quantum Interference and Coherence: Theory and Experiments, Springer Series in Optical Sciences Vol. 100 (New York: Springer Science) p7

    [4]

    Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401Google Scholar

    [5]

    Horodecki M, Oppenheim J 2013 Nat. Commun. 4 2059Google Scholar

    [6]

    Brandão F, Horodecki M, Ng N, Oppenheim J, Wehner S 2015 Proc. Natl. Acad. Sci. USA 112 3275Google Scholar

    [7]

    Rebentrost P, Mohseni M, Aspuru-Guzik A 2009 J. Phys. Chem. B 113 9942Google Scholar

    [8]

    Shao L H, Xi Z, Fan H, Li Y 2015 Phys. Rev. A 91 042120Google Scholar

    [9]

    Bromley T R, Cianciaruso M, Adesso G 2015 Phys. Rev. Lett. 114 210401Google Scholar

    [10]

    Misra A, Singh U, Bhattacharya S, Pati A K 2016 Phys. Rev. A 93 052335Google Scholar

    [11]

    Du S, Bai Z, Guo Y 2015 Phys. Rev. A 91 052120Google Scholar

    [12]

    Narasimhachar V, Gour G 2015 Nat. Commun. 6 7689Google Scholar

    [13]

    Girolami D 2014 Phys. Rev. Lett. 113 170401Google Scholar

    [14]

    Streltsov A, Singh U, Dhar H S, Bera M N, Adesso G 2015 Phys. Rev. Lett. 115 020403Google Scholar

    [15]

    Yao Y, Xiao X, Ge L, Sun C P 2015 Phys. Rev. A 92 022112Google Scholar

    [16]

    Tan K C, Kwon H, Park C Y, Jeong H 2016 Phys. Rev. A 94 022329Google Scholar

    [17]

    Wang X L, Yue Q L, Yu C H, Gao F, Qin S J 2017 arXiv: 1703.00648v1[quant-ph]

    [18]

    Marvian I, Spekkens R W 2016 Phys. Rev. A 94 052324Google Scholar

    [19]

    de Vicente J I , Streltsov A 2017 J. Phys. A: Math. Theor. 50 045301Google Scholar

    [20]

    Streltsov A, Adesso G, Plenio M B 2017 Rev. Mod. Phys. 89 041003Google Scholar

    [21]

    Quan H T, Zhang P, Sun C P 2006 Phys. Rev. E 73 036122Google Scholar

    [22]

    Scully M O, Zubairy M S, Agarwal G S, Walther H 2003 Science 299 862Google Scholar

    [23]

    Liao J Q, Dong H, Sun C P 2010 Phys. Rev. A 81 052121Google Scholar

    [24]

    Türkpençe D, Müstecaplıoğlu Ö E 2016 Phys. Rev. E 93 012145Google Scholar

    [25]

    Li H et al. 2014 Phys. Rev. E 89 052132

    [26]

    Daǧ C B, Niedenzu W, Müstecaplıoğlu Ö E, Kurizki G 2016 Entropy 18 244Google Scholar

    [27]

    Poyatos J F, Cirac J I, Zoller P 1996 Phys. Rev. Lett. 77 4728Google Scholar

    [28]

    Verstraete F, Wolf M M, Cirac J I 2009 Nat. Phys. 5 633Google Scholar

    [29]

    Wang Y D, Clerk A A 2013 Phys. Rev. Lett. 110 253601Google Scholar

    [30]

    Gelbwaser-Klimovsky D, Kurizki G 2015 Sci. Rep. 5 7809Google Scholar

    [31]

    Engel G S et al. 2007 Nature. 446 782Google Scholar

    [32]

    Lloyd S 2011 J. Phys.: Conf. Ser. 302 012037Google Scholar

    [33]

    Åberg J 2014 Phys. Rev. Lett. 113 150402Google Scholar

    [34]

    Skrzypczyk P, Short A J, Popescu S 2014 Nat. Commun. 5 4185

    [35]

    Goold J, Huber M, Riera A, del Rio L, Skrzypczyk P 2016 J. Phys. A 49 143001Google Scholar

    [36]

    Kammerlander P, Anders J 2016 Sci. Rep. 6 22174Google Scholar

    [37]

    Watanabe G, Venkatesh B P, Talkner P, del Campo A 2017 Phys. Rev. Lett. 118 050601Google Scholar

    [38]

    Lostaglio M, Korzekwa K, Jennings D, Rudolph T 2015 Phys. Rev. X 5 021001

    [39]

    Gour G, Müller M P, Narasimhachar V, Spekkens R W, Halpern N Y 2015 Phys. Rep. 583 1

    [40]

    Santos J P, Céleri L C, Landi G T, Paternostro M 2017 arXiv: 1707.08946v2[quant-ph]

    [41]

    Francica G, Goold J, Plastina F 2017 arXiv: 1707.06950v1[quant-ph]

    [42]

    Çakmak B, Manatuly A, Müstecaplıoğlu Ö E 2017 Phys. Rev. A 96 032117Google Scholar

    [43]

    Manzano G, Silva R, Parrondo J M R 2017 arXiv: 1709.00231v2[quant-ph]

    [44]

    Quan H T, Liu Y X, Sun C P, Nori F 2007 Phys. Rev. E 76 031105Google Scholar

    [45]

    Levitin L B, Toffoli T 2011 Int. J. Theor. Phys. 50 3844Google Scholar

    [46]

    Francica G, Goold J, Plastina F, Paternostro M 2017 npj Quantum Information 3 12

    [47]

    Zhang G F 2008 Eur. Phys. J. D 49 123Google Scholar

    [48]

    Thomas G, Johal R S 2011 Phys. Rev. E 83 031135Google Scholar

    [49]

    He J Z, He X, Zheng J 2012 Chin. Phys. B 21 050303Google Scholar

    [50]

    Wang H, Liu S Q, He J Z 2009 Phys. Rev. E 79 041113Google Scholar

    [51]

    张英丽, 周斌 2011 物理学报 60 120301Google Scholar

    Zhang Y L, Zhou B 2011 Acta Phys. Sin. 60 120301Google Scholar

    [52]

    Correa L A, Palao J P, Adesso G, Alonso D 2013 Phys. Rev. E 87 042131Google Scholar

    [53]

    Park J J, Kim K H, Sagawa T, Kim S W 2013 Phys. Rev. Lett. 111 230402Google Scholar

    [54]

    王涛, 黄晓理, 刘洋, 许欢 2013 物理学报 62 060301Google Scholar

    Wang T, Huang X L, Liu Y, Xu H 2013 Acta Phys. Sin. 62 060301Google Scholar

    [55]

    Brunner N, et al. 2014 Phys. Rev. E 89 032115

    [56]

    Mitchison M T, Woods M P, Prior J, Huber M 2015 New J. Phys. 17 115013Google Scholar

    [57]

    Uzdin R 2016 Phys. Rev. Appl. 6 024004Google Scholar

    [58]

    赵丽梅, 张国锋 2017 物理学报 66 240502Google Scholar

    Zhao L M, Zhang G F 2017 Acta Phys. Sin. 66 240502Google Scholar

    [59]

    Dillenschneider R, Lutz E 2009 Europhys. Lett. 88 50003Google Scholar

    [60]

    Huang X L, Wang T, Yi X X 2012 Phys. Rev. E 86 051105

    [61]

    Niedenzu W, Gelbwaser-Klimovsky D, Kofman A G, Kurizki G 2016 New J. Phys. 18 083012Google Scholar

    [62]

    Manzano G, Galve F, Zambrini R, Parrondo J M R 2016 Phys. Rev. E 93 052120

    [63]

    Manzano G 2018 Phys. Rev. E 98 042123

    [64]

    Meschede D, Walther H, Müller G 1985 Phys. Rev. Lett. 54 551Google Scholar

    [65]

    Filipowicz P, Javanainen J, Meystre P 1986 Phys. Rev. A 34 3077

    [66]

    Cresser J D 1992 Phys. Rev. A 46 5913

    [67]

    Kist T B L, Orszag M, Brun T A, Davidovich L 1999 J. Opt. B: Quantum Semiclass. Opt. 1 251

    [68]

    Deléglise et al. 2008 Nature 455 510Google Scholar

    [69]

    (北京: 世界图书出版公司北京公司) p385

    Scully M O, Zubairy M S 2011 Quantum Optics

    [70]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [71]

    Hovhannisyan K V, Perarnau-Llobet M, Huber M, Acín A 2013 Phys. Rev. Lett. 111 240401

    [72]

    Binder F C, Vinjanampathy S, Modi K, Goold J 2015 New J. Phys. 17 075015Google Scholar

    [73]

    Campaioli F et al. 2017 Phys. Rev. Lett. 118 150601Google Scholar

    [74]

    Ferraro D, Campisi M, Andolina G M, Pellegrini V, Polini M 2018 Phys. Rev. Lett. 120 117702Google Scholar

    [75]

    Andolina G M, et al. 2018 arXiv: 1807.08656v2[quant-ph]

    [76]

    Farina D, Andolina G M, Mari A, Polini M, Giovannetti V 2019 Phys. Rev. B 99 035421

    [77]

    Ito S 2018 Phys. Rev. Lett. 121 030605Google Scholar

  • 图 1  单模微腔与一系列二能级原子组成的原子库相互作用示意图 (a)处于QCC库中的二能级原子顺次穿过微腔; (b)库中无QCC情况下, 二能级原子顺次穿过微腔

    Fig. 1.  Schematic diagram of a single-mode microcavity interacting with a TLA-bath consisting of a series of two-level atoms: (a) The atoms of bath with QCC passing through the cavity one by one; (b) the atoms of bath without QCC crossing the cavity.

    图 2  腔场在不同耦合参数 $\xi=0.1$(蓝色点线), $\xi=0.3$(红色点线)和$\xi=0.5$(黑色点线)下, 从不同库态中提取的能量随穿腔原子数 ($m\in[1, 2\times10^3]$) 的变化 (a)腔场从类GHZ态下QCC中提取能量$\langle n(m, N)\rangle^{\rm qcc}$$m$的变化; (b)腔场从参考态(热态)下原子布局中提取的能量$\langle n(m, N)\rangle^{\rm ref}$$m$的变化; 其他参数取为 $\theta=3{\text{π}}/8$, $N=2\times$103; 内插图为$m$在区间$[1, 120]$的图形

    Fig. 2.  The variations of cavity's energy, $\langle n(m, N)\rangle^{\rm qcc}$ and $\langle n(m, N)\rangle^{\rm ref}$, respectively captured from the QCC of GHZ-like state in (a) and the thermal distribution of reference state (thermal state) in (b) with the number of TLAs crossing the cavity $m$ ($m\in[1, 2\times10^3]$), with $\theta=3{\text{π}}/8$ and $N=2\times10^3$ for $\xi=0.1$ (blue dots), $\xi=0.3$ (red dots) and $\xi=0.5$ (black dots). In the inset $m\in[1, 120]$.

    图 3  腔场在不同有效温度参数 $\theta=3{\text{π}}/7$(蓝色点线), $\theta=3{\text{π}}/8$(红色点线)和$\theta={\text{π}}/3$(黑色点线)下, 从不同库态中提取的能量随穿腔原子数$m$ ($m\in[1, 2\times10^3]$) 的变化 (a)腔场从类GHZ态下QCC中提取能量$\langle n(m, N)\rangle^{\rm qcc}$$m$的变化; (b)腔场从参考态(热态)下原子布局中提取的能量$\langle n(m, N)\rangle^{ref}$$m$的变化; 其他参数取为 $\xi$ = 0.3, $N$ = 200

    Fig. 3.  The variations of cavity's energy, $\langle n(m, N)\rangle^{\rm qcc}$ and $\langle n(m, N)\rangle^{\rm ref}$, respectively captured from the QCC of $GHZ$-like state in (a) and the thermal distribution of reference state (thermal state) in (b) with the number of TLAs crossing the cavity $m$ ($m\in[1, 200]$) and $\xi$= 0.3 and $N=200$ for $\theta=3{\text{π}}/7$ (blue dots), $\theta=3{\text{π}}/8$ (red dots) and $\theta={\text{π}}/3$ (black dots).

  • [1]

    García-Díaz M, Egloff D, Plenio M B 2016 Quant. Inf. Comput. 16 1282

    [2]

    Linden N, Popescu S, Skrzypczyk P 2010 Phys. Rev. Lett. 105 130401Google Scholar

    [3]

    Ficek Z, Swain S 2005 Quantum Interference and Coherence: Theory and Experiments, Springer Series in Optical Sciences Vol. 100 (New York: Springer Science) p7

    [4]

    Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401Google Scholar

    [5]

    Horodecki M, Oppenheim J 2013 Nat. Commun. 4 2059Google Scholar

    [6]

    Brandão F, Horodecki M, Ng N, Oppenheim J, Wehner S 2015 Proc. Natl. Acad. Sci. USA 112 3275Google Scholar

    [7]

    Rebentrost P, Mohseni M, Aspuru-Guzik A 2009 J. Phys. Chem. B 113 9942Google Scholar

    [8]

    Shao L H, Xi Z, Fan H, Li Y 2015 Phys. Rev. A 91 042120Google Scholar

    [9]

    Bromley T R, Cianciaruso M, Adesso G 2015 Phys. Rev. Lett. 114 210401Google Scholar

    [10]

    Misra A, Singh U, Bhattacharya S, Pati A K 2016 Phys. Rev. A 93 052335Google Scholar

    [11]

    Du S, Bai Z, Guo Y 2015 Phys. Rev. A 91 052120Google Scholar

    [12]

    Narasimhachar V, Gour G 2015 Nat. Commun. 6 7689Google Scholar

    [13]

    Girolami D 2014 Phys. Rev. Lett. 113 170401Google Scholar

    [14]

    Streltsov A, Singh U, Dhar H S, Bera M N, Adesso G 2015 Phys. Rev. Lett. 115 020403Google Scholar

    [15]

    Yao Y, Xiao X, Ge L, Sun C P 2015 Phys. Rev. A 92 022112Google Scholar

    [16]

    Tan K C, Kwon H, Park C Y, Jeong H 2016 Phys. Rev. A 94 022329Google Scholar

    [17]

    Wang X L, Yue Q L, Yu C H, Gao F, Qin S J 2017 arXiv: 1703.00648v1[quant-ph]

    [18]

    Marvian I, Spekkens R W 2016 Phys. Rev. A 94 052324Google Scholar

    [19]

    de Vicente J I , Streltsov A 2017 J. Phys. A: Math. Theor. 50 045301Google Scholar

    [20]

    Streltsov A, Adesso G, Plenio M B 2017 Rev. Mod. Phys. 89 041003Google Scholar

    [21]

    Quan H T, Zhang P, Sun C P 2006 Phys. Rev. E 73 036122Google Scholar

    [22]

    Scully M O, Zubairy M S, Agarwal G S, Walther H 2003 Science 299 862Google Scholar

    [23]

    Liao J Q, Dong H, Sun C P 2010 Phys. Rev. A 81 052121Google Scholar

    [24]

    Türkpençe D, Müstecaplıoğlu Ö E 2016 Phys. Rev. E 93 012145Google Scholar

    [25]

    Li H et al. 2014 Phys. Rev. E 89 052132

    [26]

    Daǧ C B, Niedenzu W, Müstecaplıoğlu Ö E, Kurizki G 2016 Entropy 18 244Google Scholar

    [27]

    Poyatos J F, Cirac J I, Zoller P 1996 Phys. Rev. Lett. 77 4728Google Scholar

    [28]

    Verstraete F, Wolf M M, Cirac J I 2009 Nat. Phys. 5 633Google Scholar

    [29]

    Wang Y D, Clerk A A 2013 Phys. Rev. Lett. 110 253601Google Scholar

    [30]

    Gelbwaser-Klimovsky D, Kurizki G 2015 Sci. Rep. 5 7809Google Scholar

    [31]

    Engel G S et al. 2007 Nature. 446 782Google Scholar

    [32]

    Lloyd S 2011 J. Phys.: Conf. Ser. 302 012037Google Scholar

    [33]

    Åberg J 2014 Phys. Rev. Lett. 113 150402Google Scholar

    [34]

    Skrzypczyk P, Short A J, Popescu S 2014 Nat. Commun. 5 4185

    [35]

    Goold J, Huber M, Riera A, del Rio L, Skrzypczyk P 2016 J. Phys. A 49 143001Google Scholar

    [36]

    Kammerlander P, Anders J 2016 Sci. Rep. 6 22174Google Scholar

    [37]

    Watanabe G, Venkatesh B P, Talkner P, del Campo A 2017 Phys. Rev. Lett. 118 050601Google Scholar

    [38]

    Lostaglio M, Korzekwa K, Jennings D, Rudolph T 2015 Phys. Rev. X 5 021001

    [39]

    Gour G, Müller M P, Narasimhachar V, Spekkens R W, Halpern N Y 2015 Phys. Rep. 583 1

    [40]

    Santos J P, Céleri L C, Landi G T, Paternostro M 2017 arXiv: 1707.08946v2[quant-ph]

    [41]

    Francica G, Goold J, Plastina F 2017 arXiv: 1707.06950v1[quant-ph]

    [42]

    Çakmak B, Manatuly A, Müstecaplıoğlu Ö E 2017 Phys. Rev. A 96 032117Google Scholar

    [43]

    Manzano G, Silva R, Parrondo J M R 2017 arXiv: 1709.00231v2[quant-ph]

    [44]

    Quan H T, Liu Y X, Sun C P, Nori F 2007 Phys. Rev. E 76 031105Google Scholar

    [45]

    Levitin L B, Toffoli T 2011 Int. J. Theor. Phys. 50 3844Google Scholar

    [46]

    Francica G, Goold J, Plastina F, Paternostro M 2017 npj Quantum Information 3 12

    [47]

    Zhang G F 2008 Eur. Phys. J. D 49 123Google Scholar

    [48]

    Thomas G, Johal R S 2011 Phys. Rev. E 83 031135Google Scholar

    [49]

    He J Z, He X, Zheng J 2012 Chin. Phys. B 21 050303Google Scholar

    [50]

    Wang H, Liu S Q, He J Z 2009 Phys. Rev. E 79 041113Google Scholar

    [51]

    张英丽, 周斌 2011 物理学报 60 120301Google Scholar

    Zhang Y L, Zhou B 2011 Acta Phys. Sin. 60 120301Google Scholar

    [52]

    Correa L A, Palao J P, Adesso G, Alonso D 2013 Phys. Rev. E 87 042131Google Scholar

    [53]

    Park J J, Kim K H, Sagawa T, Kim S W 2013 Phys. Rev. Lett. 111 230402Google Scholar

    [54]

    王涛, 黄晓理, 刘洋, 许欢 2013 物理学报 62 060301Google Scholar

    Wang T, Huang X L, Liu Y, Xu H 2013 Acta Phys. Sin. 62 060301Google Scholar

    [55]

    Brunner N, et al. 2014 Phys. Rev. E 89 032115

    [56]

    Mitchison M T, Woods M P, Prior J, Huber M 2015 New J. Phys. 17 115013Google Scholar

    [57]

    Uzdin R 2016 Phys. Rev. Appl. 6 024004Google Scholar

    [58]

    赵丽梅, 张国锋 2017 物理学报 66 240502Google Scholar

    Zhao L M, Zhang G F 2017 Acta Phys. Sin. 66 240502Google Scholar

    [59]

    Dillenschneider R, Lutz E 2009 Europhys. Lett. 88 50003Google Scholar

    [60]

    Huang X L, Wang T, Yi X X 2012 Phys. Rev. E 86 051105

    [61]

    Niedenzu W, Gelbwaser-Klimovsky D, Kofman A G, Kurizki G 2016 New J. Phys. 18 083012Google Scholar

    [62]

    Manzano G, Galve F, Zambrini R, Parrondo J M R 2016 Phys. Rev. E 93 052120

    [63]

    Manzano G 2018 Phys. Rev. E 98 042123

    [64]

    Meschede D, Walther H, Müller G 1985 Phys. Rev. Lett. 54 551Google Scholar

    [65]

    Filipowicz P, Javanainen J, Meystre P 1986 Phys. Rev. A 34 3077

    [66]

    Cresser J D 1992 Phys. Rev. A 46 5913

    [67]

    Kist T B L, Orszag M, Brun T A, Davidovich L 1999 J. Opt. B: Quantum Semiclass. Opt. 1 251

    [68]

    Deléglise et al. 2008 Nature 455 510Google Scholar

    [69]

    (北京: 世界图书出版公司北京公司) p385

    Scully M O, Zubairy M S 2011 Quantum Optics

    [70]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [71]

    Hovhannisyan K V, Perarnau-Llobet M, Huber M, Acín A 2013 Phys. Rev. Lett. 111 240401

    [72]

    Binder F C, Vinjanampathy S, Modi K, Goold J 2015 New J. Phys. 17 075015Google Scholar

    [73]

    Campaioli F et al. 2017 Phys. Rev. Lett. 118 150601Google Scholar

    [74]

    Ferraro D, Campisi M, Andolina G M, Pellegrini V, Polini M 2018 Phys. Rev. Lett. 120 117702Google Scholar

    [75]

    Andolina G M, et al. 2018 arXiv: 1807.08656v2[quant-ph]

    [76]

    Farina D, Andolina G M, Mari A, Polini M, Giovannetti V 2019 Phys. Rev. B 99 035421

    [77]

    Ito S 2018 Phys. Rev. Lett. 121 030605Google Scholar

  • [1] 陈锋, 任刚. 基于纠缠态表象的双模耦合谐振子量子特性分析. 物理学报, 2024, 73(23): 230302. doi: 10.7498/aps.73.20241303
    [2] 白健男, 韩嵩, 陈建弟, 韩海燕, 严冬. 超级里德伯原子间的稳态关联集体激发与量子纠缠. 物理学报, 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [3] 刘腾, 陆鹏飞, 胡碧莹, 吴昊, 劳祺峰, 边纪, 刘泱, 朱峰, 罗乐. 离子阱中以声子为媒介的多体量子纠缠与逻辑门. 物理学报, 2022, 71(8): 080301. doi: 10.7498/aps.71.20220360
    [4] 宋悦, 李军奇, 梁九卿. 级联环境下三量子比特量子关联动力学研究. 物理学报, 2021, 70(10): 100301. doi: 10.7498/aps.70.20202133
    [5] 仲银银, 潘晓州, 荆杰泰. 级联四波混频相干反馈控制系统量子纠缠特性. 物理学报, 2020, 69(13): 130301. doi: 10.7498/aps.69.20200042
    [6] 杨荣国, 张超霞, 李妮, 张静, 郜江瑞. 级联四波混频系统中纠缠增强的量子操控. 物理学报, 2019, 68(9): 094205. doi: 10.7498/aps.68.20181837
    [7] 李雪琴, 赵云芳, 唐艳妮, 杨卫军. 基于金刚石氮-空位色心自旋系综与超导量子电路混合系统的量子节点纠缠. 物理学报, 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [8] 王灿灿. 量子纠缠与宇宙学弗里德曼方程. 物理学报, 2018, 67(17): 179501. doi: 10.7498/aps.67.20180813
    [9] 安志云, 李志坚. 逾渗分立时间量子行走的传输及纠缠特性. 物理学报, 2017, 66(13): 130303. doi: 10.7498/aps.66.130303
    [10] 苏耀恒, 陈爱民, 王洪雷, 相春环. 一维自旋1键交替XXZ链中的量子纠缠和临界指数. 物理学报, 2017, 66(12): 120301. doi: 10.7498/aps.66.120301
    [11] 丛美艳, 杨晶, 黄燕霞. 在不同初态下Dzyaloshinskii-Moriya相互作用及内禀退相干对海森伯系统的量子纠缠的影响. 物理学报, 2016, 65(17): 170301. doi: 10.7498/aps.65.170301
    [12] 曹辉. Majorana表象下的纠缠动力学. 物理学报, 2013, 62(3): 030303. doi: 10.7498/aps.62.030303
    [13] 贺志, 李龙武. 两二能级原子在共同环境下的量子关联动力学. 物理学报, 2013, 62(18): 180301. doi: 10.7498/aps.62.180301
    [14] 夏建平, 任学藻, 丛红璐, 王旭文, 贺树. 两量子比特与谐振子相耦合系统中的量子纠缠演化特性. 物理学报, 2012, 61(1): 014208. doi: 10.7498/aps.61.014208
    [15] 赵建辉, 王海涛. 应用多尺度纠缠重整化算法研究量子自旋系统的量子相变和基态纠缠. 物理学报, 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [16] 刘圣鑫, 李莎莎, 孔祥木. Dzyaloshinskii-Moriya相互作用对量子XY链中热纠缠的影响. 物理学报, 2011, 60(3): 030303. doi: 10.7498/aps.60.030303
    [17] 陈宇, 邹健, 李军刚, 邵彬. 耗散环境下三原子之间稳定纠缠的量子反馈控制. 物理学报, 2010, 59(12): 8365-8370. doi: 10.7498/aps.59.8365
    [18] 周南润, 曾宾阳, 王立军, 龚黎华. 基于纠缠的选择自动重传量子同步通信协议. 物理学报, 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [19] 胡要花, 方卯发, 廖湘萍, 郑小娟. 二项式光场与级联三能级原子的量子纠缠. 物理学报, 2006, 55(9): 4631-4637. doi: 10.7498/aps.55.4631
    [20] 王成志, 方卯发. 双模压缩真空态与原子相互作用中的量子纠缠和退相干. 物理学报, 2002, 51(9): 1989-1995. doi: 10.7498/aps.51.1989
计量
  • 文章访问数:  7265
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-14
  • 修回日期:  2018-11-23
  • 上网日期:  2019-02-01
  • 刊出日期:  2019-02-20

/

返回文章
返回