搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

受激布里渊散射海洋激光雷达时域脉冲特性

贾晓红 何兴道 史久林

引用本文:
Citation:

受激布里渊散射海洋激光雷达时域脉冲特性

贾晓红, 何兴道, 史久林
cstr: 32037.14.aps.74.20250132

Time-domain pulse characteristics of stimulated Brillouin scattering ocean lidar

JIA Xiaohong, HE Xingdao, SHI Jiulin
cstr: 32037.14.aps.74.20250132
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 受激布里渊散射激光雷达探测技术具有高分辨、高信噪比、强抗干扰能力等优势, 在海水温-盐-声多参数联合测量方面具有重要应用前景. 受激布里渊散射是一个非线性动态过程, 其发生位置、峰值强度、谱线形状等随时间而变化. 本文基于分布式噪声模型对不同激光波长、脉宽及焦距的水中受激布里渊散射时域信号进行了理论模拟及分析, 研究了聚焦与非聚焦两种结构产生的Stokes脉冲特性. 结果表明: 波长越短, Stokes散射光的峰值功率越高, 在低入射能量时短脉冲获得更强的散射光, 而高入射能量时, 长脉冲更具优势, 焦距越大, 散射光峰值功率越低, 脉冲保真度越好; 随着入射能量的增加, 非聚焦结构的Stokes散射光脉冲宽度不断增加, 聚焦结构的Stokes散射光脉宽先减小后增大, 且存在受温度和能量影响的最佳压缩值, 低温时, Stokes散射光脉宽在阈值能量附近具有更好的压缩效果. 研究结果对提升受激布里渊散射激光雷达探测性能具有重要意义.
    Stimulated Brillouin scattering lidar (SBS-LiDAR) technology possesses significant advantages such as high resolution, high signal-to-noise ratio, and strong anti-interference capacity, making it highly promising for simultaneous measurements of temperature, salinity, and sound velocity in seawater. Stimulated Brillouin scattering (SBS) is a nonlinear dynamic process characterized by temporal variations in its occurrence location, peak intensity, and spectral shape. Through numerical simulations of Stokes pulse, the conditions for SBS generation can be quantitatively determined, thereby establishing a theoretical foundation for optimizing lidar systems and enhancing their detection capabilities. Existing studies on Stokes pulses typically focus on specific experimental configurations under varying parameters, including medium properties, pump laser characteristics, and ambient environmental factors. There are still significant discrepancies in reported conclusions regarding the relationship between incident energy levels and pulse width variations, particularly in water-based environments where systematic research on the Stokes scattering pulse characteristics is clearly insufficient. In this study, a distributed noise model is used to theoretically simulate and analyze the time-domain signals of SBS in water at different laser wavelengths, pulse widths, and focal lengths. The characteristics of Stokes pulses generated by focused and non-focused configurations are investigated. The results indicate that under the same conditions, shorter incident wavelength produces significantly higher peak power of Stokes scattering light. The Stokes scattering light exhibits significant energy-dependent behavior: at low input energy, short pulse generates stronger scattering signal due to enhanced nonlinear interaction efficiency, while at high input energy, longer pulse exhibits excellent performance by maintaining temporal coherence. The larger focal length results in lower peak power but better pulse fidelity. As the incident energy increases, the pulse width of Stokes scattering light in the non-focused configuration exhibits a continuous increase. In contrast, for the focused configuration, the pulse width initially decreases and then increases, exhibiting an optimal compression value influenced by temperature and energy. At lower temperatures, the Stokes pulse width exhibits excellent compression performance near the threshold energy. Therefore, reducing secondary peak interference and suppressing spectral broadening are critical technical challenges that must be systematically addressed for short-range SBS-Lidar applications. In low-temperature detection scenarios, dynamic attenuation control becomes essential to prevent thermal stress-induced damage to photodetectors. These findings are of great significance in enhancing the performance of SBS-LiDAR system.
      通信作者: 史久林, jiulinshi@126.com
    • 基金项目: 国家自然科学基金(批准号: 41776111, 12264031)和国防基础科研计划(批准号: JCKY2019401D002)资助的课题.
      Corresponding author: SHI Jiulin, jiulinshi@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41776111, 12264031) and the Defense Industrial Technology Development Program of China (Grant No. JCKY2019401D002).
    [1]

    Shen Y R 1984 The Principles of Nonlinear Optics (New York: Wiley

    [2]

    Eliasson B, Senior A, Rietveld M, Phelps A D R, Cairns R A, Ronald K, Speirs D C, Trines R M G M, McCrea I, Bamford R, Mendonça J T, Bingham R 2021 Nat. Commun. 12 6209Google Scholar

    [3]

    Zhao Y, Lei A, Kang N, Li F, Li X, Liu H, Lin Z, Yin H, Xu Y, Yi Y, Xu Z 2024 Phys. Rev. E 110 065206Google Scholar

    [4]

    Gonzalez-Herraez M, Song K Y, Thévenaz L 2005 Appl. Phys. Lett. 87 081113Google Scholar

    [5]

    Wei W, Yi L L, Jaouèn Y, Morvan M, Weisheng H 2015 Opto-Electronics and Communications Conference (OECC) Shanghai, China June 28–July 2, 2015 p1

    [6]

    Ballmann C W, Thompson J V, Traverso A J, Meng Z, Scully M O, Yakovlev V V 2015 Sci. Rep. 5 18139Google Scholar

    [7]

    Ballmann C W, Meng Z, Traverso A J, Scully M O, Yakovlev V V 2017 Optica 4 124Google Scholar

    [8]

    Shi J, Ouyang M, Gong W, Li S, Liu D 2008 Appl. Phys. B 90 569Google Scholar

    [9]

    Shi J, Xu J, Guo Y, Luo N, Li S, He X 2021 Phys. Rev. Appl 15 054024Google Scholar

    [10]

    Xu N, Liu Z, Zhang X, Xu Y, Luo N, Li S, Xu J, He X, Shi J 2021 Opt. Express 29 36442Google Scholar

    [11]

    Shi J, Xu N, Luo N, Li S, Xu J, He X 2022 Opt. Express 30 16419Google Scholar

    [12]

    Maier M, Rother W, Kaiser W 1967 Appl. Phys. Lett. 10 80Google Scholar

    [13]

    Hon D T 1981 Opt. Lett. 5 516Google Scholar

    [14]

    Eichler H J, Menzel R, Sander R, Smandek B 1992 Opt. Commun. 89 260Google Scholar

    [15]

    徐德 2008 硕士学位论文 (杭州: 浙江大学)

    Xu D 2008 M. S. Thesis ( Hangzhou: Zhejiang University

    [16]

    刘照虹 2018 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Liu Z H 2018 Ph. D. Dissertation (Harbin: Harbin Institute of Technology

    [17]

    哈斯乌力吉, 吕志伟, 滕云鹏, 刘述杰, 李强, 何伟明 2007 物理学报 56 878Google Scholar

    Hasi W L J, Lv Z W, Teng Y P, Liu S J, Li Q, He W M 2007 Acta Phys. Sin. 56 878Google Scholar

    [18]

    郭少锋, 陆启生, 李强, 程湘爱, 邓少永, 曾学文 2004 强激光与粒子束 16 1106

    Guo S F, Lu Q S, Li Q, Cheng X A, Deng S Y, Zeng X W 2004 High Power Laser Part. Beams 16 1106

    [19]

    邓少永, 郭少锋, 陆启生, 程湘爱 2005 物理学报 54 3164Google Scholar

    Deng S Y, Guo S F, Lu Q S, Cheng X A 2005 Acta Phys. Sin. 54 3164Google Scholar

    [20]

    He X, Tang Y, Shi J, Liu J, Cheng W, Mo X 2012 J. Mod. Opt. 59 1410Google Scholar

    [21]

    龚华平, 吕志伟, 林殿阳, 刘松江 2007 物理学报 56 5263Google Scholar

    Gong H P, Lü Z W, Lin D Y, Liu S J 2007 Acta Phys. Sin. 56 5263Google Scholar

    [22]

    Zhu L, Bai Z, Chen Y, Jin D, Fan R, Qi Y, Ding J, Yan B, Wang Y, Lu Z 2022 Opt. Commun 515 128205Google Scholar

    [23]

    Boyd R W, Rzaewski K, Narum P 1990 Phys. Rev. A 42 5514Google Scholar

    [24]

    Levent S 2014 Electromagnetic Modeling and Simulation (IEEE) (New York: Wiley-IEEE Press) pp407–513

    [25]

    Schiemann S, Ubachs W, Hogervorst W 1997 IEEE J. Quantum Electron. 33 358Google Scholar

    [26]

    Shi J, Tang Y, Wei H, Zhang L, Zhang D, Shi J, Gong W, He X, Yang K, Liu D 2012 Appl. Phys. B 108 717Google Scholar

    [27]

    Feng C, Xu X, Diels J C 2017 Opt. Express 25 12421Google Scholar

    [28]

    Hirschberg J G, Byrne J D, Wouters A W, Boynton G C 1984 Appl. Opt. 23 2624Google Scholar

    [29]

    Millard R C, Seaver G 1990 Deep Sea Res. Part A 37 1909Google Scholar

    [30]

    Roquet F, Madec G, McDougall T J, Barker P M 2015 Ocean Modell. 90 29Google Scholar

    [31]

    Damzen M J, Vlad V, Babin V, Mocofanescu A 2003 Stimulated Brillouin Scattering: Fundamentals and Applications (London: Institute of Physics Publishing) pp1–190

  • 图 1  水中SBS光束传输 (a)聚焦结构; (b)非聚焦结构

    Fig. 1.  SBS beam transmission in water: (a) Focused structure; (b) unfocused structure.

    图 2  入射波长对时域SBS信号的影响 (a) SBS脉冲波形; (b)反射率

    Fig. 2.  Effect of incident wavelength on SBS temporal profile: (a) SBS spectral line; (b) reflectivity.

    图 3  脉宽对时域SBS信号的影响 (a) SBS脉冲波形; (b)反射率

    Fig. 3.  Effect of pulse width on SBS temporal profile: (a) SBS spectral line; (b) reflectivity.

    图 4  聚焦深度对时域SBS信号的影响

    Fig. 4.  Effect of focal length on SBS temporal profile.

    图 5  SBS时域波形图 (a), (c)非聚焦结构; (b), (d)聚焦结构

    Fig. 5.  SBS temporal profiles: (a), (c) Unfocused structure; (b), (d) focused structure.

    图 6  Stokes散射光的振幅变化 (a)聚焦结构; (b)非聚焦结构

    Fig. 6.  Amplitude variation of Stokes light: (a) Focused structure; (b) unfocused structure.

    图 7  Stokes散射光空间归一化光强分布(z = 4.5 m) (a)聚焦结构; (b)非聚焦结构

    Fig. 7.  Normalized intensity of the Stokes light (z = 4.5 m): (a) Focused structure; (b) unfocused structure.

    图 8  不同温度下Stokes散射光脉宽随能量的变化 (a)非聚焦结构; (b)聚焦结构

    Fig. 8.  Variation of the pulse width of Stokes light with the incident energy at different temperatures: (a) Unfocused structure; (b) focused structure.

    图 9  脉宽压缩比变化 (a)非聚焦结构; (b)聚焦结构

    Fig. 9.  Changes in pulse width compression ratio: (a) Unfocused structure; (b) focused structure.

    表 1  数值模拟参数设置

    Table 1.  Parameter setting for numerical simulation.

    参数数值参数数值
    波长/nm532增益系数/(cm·GW–1)3.8
    脉宽/ns8折射率1.333
    光斑尺寸/mm2.5声子寿命/ps200
    介质池长/m5衰减系数/m–10.06
    下载: 导出CSV
  • [1]

    Shen Y R 1984 The Principles of Nonlinear Optics (New York: Wiley

    [2]

    Eliasson B, Senior A, Rietveld M, Phelps A D R, Cairns R A, Ronald K, Speirs D C, Trines R M G M, McCrea I, Bamford R, Mendonça J T, Bingham R 2021 Nat. Commun. 12 6209Google Scholar

    [3]

    Zhao Y, Lei A, Kang N, Li F, Li X, Liu H, Lin Z, Yin H, Xu Y, Yi Y, Xu Z 2024 Phys. Rev. E 110 065206Google Scholar

    [4]

    Gonzalez-Herraez M, Song K Y, Thévenaz L 2005 Appl. Phys. Lett. 87 081113Google Scholar

    [5]

    Wei W, Yi L L, Jaouèn Y, Morvan M, Weisheng H 2015 Opto-Electronics and Communications Conference (OECC) Shanghai, China June 28–July 2, 2015 p1

    [6]

    Ballmann C W, Thompson J V, Traverso A J, Meng Z, Scully M O, Yakovlev V V 2015 Sci. Rep. 5 18139Google Scholar

    [7]

    Ballmann C W, Meng Z, Traverso A J, Scully M O, Yakovlev V V 2017 Optica 4 124Google Scholar

    [8]

    Shi J, Ouyang M, Gong W, Li S, Liu D 2008 Appl. Phys. B 90 569Google Scholar

    [9]

    Shi J, Xu J, Guo Y, Luo N, Li S, He X 2021 Phys. Rev. Appl 15 054024Google Scholar

    [10]

    Xu N, Liu Z, Zhang X, Xu Y, Luo N, Li S, Xu J, He X, Shi J 2021 Opt. Express 29 36442Google Scholar

    [11]

    Shi J, Xu N, Luo N, Li S, Xu J, He X 2022 Opt. Express 30 16419Google Scholar

    [12]

    Maier M, Rother W, Kaiser W 1967 Appl. Phys. Lett. 10 80Google Scholar

    [13]

    Hon D T 1981 Opt. Lett. 5 516Google Scholar

    [14]

    Eichler H J, Menzel R, Sander R, Smandek B 1992 Opt. Commun. 89 260Google Scholar

    [15]

    徐德 2008 硕士学位论文 (杭州: 浙江大学)

    Xu D 2008 M. S. Thesis ( Hangzhou: Zhejiang University

    [16]

    刘照虹 2018 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Liu Z H 2018 Ph. D. Dissertation (Harbin: Harbin Institute of Technology

    [17]

    哈斯乌力吉, 吕志伟, 滕云鹏, 刘述杰, 李强, 何伟明 2007 物理学报 56 878Google Scholar

    Hasi W L J, Lv Z W, Teng Y P, Liu S J, Li Q, He W M 2007 Acta Phys. Sin. 56 878Google Scholar

    [18]

    郭少锋, 陆启生, 李强, 程湘爱, 邓少永, 曾学文 2004 强激光与粒子束 16 1106

    Guo S F, Lu Q S, Li Q, Cheng X A, Deng S Y, Zeng X W 2004 High Power Laser Part. Beams 16 1106

    [19]

    邓少永, 郭少锋, 陆启生, 程湘爱 2005 物理学报 54 3164Google Scholar

    Deng S Y, Guo S F, Lu Q S, Cheng X A 2005 Acta Phys. Sin. 54 3164Google Scholar

    [20]

    He X, Tang Y, Shi J, Liu J, Cheng W, Mo X 2012 J. Mod. Opt. 59 1410Google Scholar

    [21]

    龚华平, 吕志伟, 林殿阳, 刘松江 2007 物理学报 56 5263Google Scholar

    Gong H P, Lü Z W, Lin D Y, Liu S J 2007 Acta Phys. Sin. 56 5263Google Scholar

    [22]

    Zhu L, Bai Z, Chen Y, Jin D, Fan R, Qi Y, Ding J, Yan B, Wang Y, Lu Z 2022 Opt. Commun 515 128205Google Scholar

    [23]

    Boyd R W, Rzaewski K, Narum P 1990 Phys. Rev. A 42 5514Google Scholar

    [24]

    Levent S 2014 Electromagnetic Modeling and Simulation (IEEE) (New York: Wiley-IEEE Press) pp407–513

    [25]

    Schiemann S, Ubachs W, Hogervorst W 1997 IEEE J. Quantum Electron. 33 358Google Scholar

    [26]

    Shi J, Tang Y, Wei H, Zhang L, Zhang D, Shi J, Gong W, He X, Yang K, Liu D 2012 Appl. Phys. B 108 717Google Scholar

    [27]

    Feng C, Xu X, Diels J C 2017 Opt. Express 25 12421Google Scholar

    [28]

    Hirschberg J G, Byrne J D, Wouters A W, Boynton G C 1984 Appl. Opt. 23 2624Google Scholar

    [29]

    Millard R C, Seaver G 1990 Deep Sea Res. Part A 37 1909Google Scholar

    [30]

    Roquet F, Madec G, McDougall T J, Barker P M 2015 Ocean Modell. 90 29Google Scholar

    [31]

    Damzen M J, Vlad V, Babin V, Mocofanescu A 2003 Stimulated Brillouin Scattering: Fundamentals and Applications (London: Institute of Physics Publishing) pp1–190

  • [1] 龙欣宇, 王佩佩, 安红海, 熊俊, 谢志勇, 方智恒, 孙今人, 王琛. 宽带激光辐照平面薄膜靶的近前向散射. 物理学报, 2024, 73(12): 125202. doi: 10.7498/aps.73.20231613
    [2] 粟荣涛, 张鹏飞, 周朴, 肖虎, 王小林, 段磊, 吕品, 许晓军. 窄线宽纳秒脉冲光纤拉曼放大器的理论模型和数值分析. 物理学报, 2018, 67(15): 154202. doi: 10.7498/aps.67.20172679
    [3] 粟荣涛, 肖虎, 周朴, 王小林, 马阎星, 段磊, 吕品, 许晓军. 窄线宽脉冲光纤激光的自相位调制预补偿研究. 物理学报, 2018, 67(16): 164201. doi: 10.7498/aps.67.20180486
    [4] 张磊, 李金增. 水中受激布里渊散射脉冲的反常压缩. 物理学报, 2014, 63(5): 054202. doi: 10.7498/aps.63.054202
    [5] 梁善勇, 王江安, 张峰, 吴荣华, 宗思光, 王雨虹, 王乐东. 基于舰船尾流激光雷达的Monte Carlo模型及方差消减方法研究. 物理学报, 2013, 62(1): 015205. doi: 10.7498/aps.62.015205
    [6] 狄慧鸽, 华灯鑫, 王玉峰, 闫庆. 米散射激光雷达重叠因子及全程回波信号标定技术研究. 物理学报, 2013, 62(9): 094215. doi: 10.7498/aps.62.094215
    [7] 刘占军, 郝亮, 项江, 郑春阳. 激光聚变中受激布里渊散射的混合模拟研究. 物理学报, 2012, 61(11): 115202. doi: 10.7498/aps.61.115202
    [8] 沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康. Rayleigh散射Doppler激光雷达风场反演方法改进. 物理学报, 2012, 61(3): 030702. doi: 10.7498/aps.61.030702
    [9] 梁善勇, 王江安, 张峰, 石晟玮, 马治国, 刘涛, 王雨虹. 基于尾流激光雷达的能量对消式大动态接收技术. 物理学报, 2012, 61(11): 110701. doi: 10.7498/aps.61.110701
    [10] 沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康. 瑞利散射多普勒激光雷达风场反演方法. 物理学报, 2011, 60(6): 060704. doi: 10.7498/aps.60.060704
    [11] 陈旭东, 石锦卫, 刘娟, 刘宝, 许艳霞, 史久林, 刘大禾. 同轴正交偏振双脉冲序列受激布里渊散射抽运放大的实现方法. 物理学报, 2010, 59(2): 1047-1051. doi: 10.7498/aps.59.1047
    [12] 刘 娟, 白建辉, 倪 恺, 景红梅, 何兴道, 刘大禾. 受激布里渊散射对激光在水中衰减特性的影响. 物理学报, 2008, 57(1): 260-264. doi: 10.7498/aps.57.260
    [13] 吕月兰, 吕志伟, 董永康. 利用染料片吸收控制受激布里渊散射功率限幅波形. 物理学报, 2007, 56(10): 5849-5854. doi: 10.7498/aps.56.5849
    [14] 哈斯乌力吉, 吕志伟, 滕云鹏, 刘述杰, 李 强, 何伟明. 受激布里渊散射光脉冲波形的研究. 物理学报, 2007, 56(2): 878-882. doi: 10.7498/aps.56.878
    [15] 洪光烈, 张寅超, 赵曰峰, 邵石生, 谭 锟, 胡欢陵. 探测大气中CO2的Raman激光雷达. 物理学报, 2006, 55(2): 983-987. doi: 10.7498/aps.55.983
    [16] 吕月兰, 董永康, 吕志伟. 受激布里渊散射光限幅输出波形控制研究. 物理学报, 2006, 55(10): 5247-5251. doi: 10.7498/aps.55.5247
    [17] 邓少永, 郭少锋, 陆启生, 程湘爱. 抽运光参数对受激布里渊散射的影响. 物理学报, 2005, 54(7): 3164-3172. doi: 10.7498/aps.54.3164
    [18] 何伟明, 杨 珺, 吕月兰, 吕志伟. 种子场对单池受激布里渊散射脉冲波形保真的影响. 物理学报, 2004, 53(2): 468-472. doi: 10.7498/aps.53.468
    [19] 吕月兰, 吕志伟, 董永康. 受激布里渊散射介质CCl4中脉冲传输与功率限幅特性. 物理学报, 2004, 53(7): 2170-2174. doi: 10.7498/aps.53.2170
    [20] 吕志伟, 王晓慧, 林殿阳, 王 超, 赵晓彦, 汤秀章, 张海峰, 单玉生. KrF激光受激布里渊散射反射率稳定性的研究. 物理学报, 2003, 52(5): 1184-1189. doi: 10.7498/aps.52.1184
计量
  • 文章访问数:  356
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-31
  • 修回日期:  2025-02-25
  • 上网日期:  2025-03-04

/

返回文章
返回