搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维高斯调制连续变量量子密钥分发现实源强度误差的影响

王普 白增亮 常利伟

引用本文:
Citation:

一维高斯调制连续变量量子密钥分发现实源强度误差的影响

王普, 白增亮, 常利伟
cstr: 32037.14.aps.74.20250025

Influence of source intensity errors in unidimensional Gaussian modulation continuous-variable quantum key distribution

WANG Pu, BAI Zengliang, CHANG Liwei
cstr: 32037.14.aps.74.20250025
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文深入地研究了一维高斯调制连续变量量子密钥分发系统在源强度误差下的现实安全性和性能表现. 详细地分析了源强度误差对协议参数估计过程的影响机制, 并基于发送端的三种现实假设, 提出相应数据优化方案, 以减轻源强度误差的负面影响. 同时, 综合考虑了源强度误差及有限码长效应, 以保障系统的现实安全性. 研究结果表明, 源强度误差不可忽视, 对于显著的强度波动, 系统的最大传输距离将减少约20 km. 因此, 在协议的实际实施过程中, 必须充分考虑源强度误差的影响, 并采取相应的措施来减少或消除这些误差. 本研究为现实条件下实施一维高斯调制连续变量量子密钥分发提供了理论依据, 为构建高效、低成本、小型化的量子通信网络探索了新方向.
    Unidimensional Gaussian modulation continuous-variable quantum key distribution (UD CV-QKD) uses only one modulator to encode information. The UD CV-QKD has the advantages of low implementation cost and low random number consumption, making it attractive for the construction of future miniaturized and low-cost large-scale quantum communication networks. However, in the actual application of the protocol, the intensity fluctuation of the source pulsed light, device defects, and external environmental interference maybe lead to the generation of source intensity errors, thereby affecting the realistic security and performance of the protocol. To solve these problems, the security and performance of UD CV-QKD are studied in depth under source intensity errors in this work. The mechanism of source intensity errors influencing the protocol parameter estimation process is analyzed. To make it possible that the protocol can operate stably under various realistic conditions and ensure communication security, three practical assumptions about the sender’s abilities are made in this work, and corresponding data optimization processing schemes for these assumptions are proposed to reduce the negative influence of source intensity errors. Additionally, both source errors and finite-size effect are comprehensively considered to ensure the realistic security of the system. The simulation results indicate that the source intensity errors cannot be neglected and the maximum transmission distance of the system will be reduced by approximately 20 km for significant intensity fluctuations. Therefore, in the practical implementation of the protocol, the influence of source intensity errors must be fully considered, and the corresponding countermeasures should be taken to reduce or even eliminate these errors. This study provides theoretical guidance for securely implementing the UD CV-QKD in real-world environments.
      通信作者: 王普, wangpu@sxufe.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62305198)和山西省自然科学基金(批准号: 202303021212168, 202103021224290)资助的课题.
      Corresponding author: WANG Pu, wangpu@sxufe.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62305198) and the Natural Science Foundation of Shanxi Province, China (Grant Nos. 202303021212168, 202103021224290).
    [1]

    Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (Bangalore: IEEE) p175

    [2]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [3]

    Lo H K, Curty M, Tamaki K 2014 Nat. Photonics 8 595Google Scholar

    [4]

    Bennett C H, Bessette F, Brassard G, Salvail L, Smolin J 1992 J. Cryptology 5 3Google Scholar

    [5]

    Chen Y A, Zhang Q, Chen T Y, Cai W Q, Liao S K, Zhang J, Chen K, Yin J, Ren J G, Chen Z, Han S L, Yu Q, Liang K, Zhou F, Yuan X, Zhao M S, Wang T Y, Jiang X, Zhang L, Liu W Y, Li Y, Shen Q, Cao Y, Lu C Y, Shu R, Wang J Y, Li L, Liu N L, Xu F, Wang X B, Peng C Z, Pan J W 2021 Nature 589 214Google Scholar

    [6]

    Xu F H, Ma X F, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [7]

    Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shamsul Shaari J, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photonics 12 1012Google Scholar

    [8]

    Portmann C, Renner R 2022 Rev. Mod. Phys. 94 025008Google Scholar

    [9]

    Diamanti E, Leverrier A 2015 Entropy 17 6072Google Scholar

    [10]

    Li Y M, Wang X Y, Bai Z L, Liu W Y, Yang S S, Peng K C 2017 Chin. Phys. B 26 040303Google Scholar

    [11]

    Guo H, Li Z Y, Yu S, Zhang Y C 2021 Fundam. Res. 1 96Google Scholar

    [12]

    Zhang Y C, Bian Y M, Li Z Y, Yu S, Guo H 2024 Appl. Phys. Rev. 11 011318Google Scholar

    [13]

    Lin J, Upadhyaya T, Lütkenhaus N 2019 Phys. Rev. X 9 041064Google Scholar

    [14]

    Du S N, Tian Y, Li Y M 2020 Phys. Rev. Appl. 14 024013Google Scholar

    [15]

    Li L, Huang P, Wang T, Zeng G H 2021 Phys. Rev. A 103 032611Google Scholar

    [16]

    Liao Q, Wang Z, Liu H J, Mao Y Y, Fu X Q 2022 Phys. Rev. A 106 022607Google Scholar

    [17]

    Liu J Q, Cao Y X, Wang P, Liu S S, Lu Z G, Wang X Y, Li Y M 2022 Opt. Express 30 27912Google Scholar

    [18]

    吴晓东, 黄端, 黄鹏, 郭迎 2022 物理学报 71 240304Google Scholar

    Wu X D, Huang D, Huang P, Guo Y 2022 Acta Phys. Sin. 71 240304Google Scholar

    [19]

    廖骎, 柳海杰, 王铮, 朱凌瑾 2023 物理学报 72 040301Google Scholar

    Liao Q, Liu H J, Wang Z, Zhu L J 2023 Acta Phys. Sin. 72 040301Google Scholar

    [20]

    Huang L Y, Wang X Y, Chen Z Y, Sun Y H, Yu S, Guo H 2023 Phys. Rev. Appl. 19 014023Google Scholar

    [21]

    Zapatero V, van Leent T, Arnon-Friedman R, Liu W Z, Zhang Q, Weinfurter H, Curty M 2023 npj Quantum Inf. 9 10Google Scholar

    [22]

    Xu Y H, Wang T, Liao X J, Zhou Y M, Huang P, Zeng G H 2024 Photonics Res. 12 2549Google Scholar

    [23]

    Fletcher A I, Harney C, Ghalaii M, Papanastasiou P, Mountogiannakis A, Spedalieri G, Hajomer A A E, Gehring T, Pirandola S 2025 arXiv: 2501.09818 [quant-ph]

    [24]

    Wang P, Wang X Y, Li Y M 2019 Phys. Rev. A 99 042309Google Scholar

    [25]

    Zhang Y C, Chen Z Y, Pirandola S, Wang X Y, Zhou C, Chu B J, Zhao Y J, Xu B J, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502Google Scholar

    [26]

    Dequal D, Trigo Vidarte L, Roman Rodriguez V, Vallone G, Villoresi P, Leverrier A, Diamanti E 2021 npj Quantum Inf. 7 3Google Scholar

    [27]

    Jeong S, Jung H, Ha J 2022 npj Quantum Inf. 8 6Google Scholar

    [28]

    Ma L, Yang J, Zhang T, Shao Y, Liu J L, Luo Y J, Wang H, Huang W, Fan F, Zhou C, Zhang L L, Zhang S, Zhang Y C, Li Y, Xu B J 2023 Sci. China Inf. Sci. 66 180507Google Scholar

    [29]

    Pi Y D, Wang H, Pan Y, Shao Y, Li Y, Yang J, Zhang Y C, Huang W, Xu B J 2023 Opt. Lett. 48 1766Google Scholar

    [30]

    Wang P, Zhang Y, Lu Z G, Wang X Y, Li Y M 2023 New J. Phys. 25 023019Google Scholar

    [31]

    Yang S S, Yan Z L, Yang H Z, Lu Q, Lu Z G, Cheng L Y, Miao X Y, Li Y M 2023 EPJ Quantum Technol. 10 40Google Scholar

    [32]

    Chen Z Y, Wang X Y, Yu S, Li Z Y, Guo H 2023 npj Quantum Inf. 9 28Google Scholar

    [33]

    Hajomer A A E, Derkach I, Jain N, Chin H M, Andersen U L, Gehring T 2024 Sci. Adv. 10 eadi9474Google Scholar

    [34]

    Zhang G, Haw J Y, Cai H, Xu F, Assad S M, Fitzsimons J F, Zhou X, Zhang Y, Yu S, Wu J, Ser W, Kwek L C, Liu A Q 2019 Nat. Photonics 13 839Google Scholar

    [35]

    Qi B, Gunther H, Evans P G, Williams B P, Camacho R M, Peters N A 2020 Phys. Rev. Appl. 13 054065Google Scholar

    [36]

    Milovančev D, Vokić N, Laudenbach F, Pacher C, Hübel H, Schrenk B 2021 J. Lightwave Technol. 39 3445Google Scholar

    [37]

    Tian Y, Wang P, Liu J Q, Du S N, Liu W Y, Lu Z G, Wang X Y, Li Y M 2022 Optica 9 492Google Scholar

    [38]

    Du S N, Wang P, Liu J Q, Tian Y, Li Y M 2023 Photonics Res. 11 463Google Scholar

    [39]

    Wang X Y, Chen Z Y, Li Z H, Qi D K, Yu S, Guo H 2023 Opt. Lett. 48 3327Google Scholar

    [40]

    Zhang M Q, Huang P, Wang P, Wei S R, Zeng G H 2023 Opt. Lett. 48 1184Google Scholar

    [41]

    Hajomer A A E, Bruynsteen C, Derkach I, Jain N, Bomhals A, Bastiaens S, Andersen U L, Yin X, Gehring T 2024 Optica 11 1197Google Scholar

    [42]

    Hajomer A A E, Derkach I, Filip R, Andersen U L, Usenko V C, Gehring T 2024 Light Sci. Appl. 13 291Google Scholar

    [43]

    Ji F Y, Huang P, Wang T, Jiang X Q, Zeng G H 2024 Photonics Res. 12 1485Google Scholar

    [44]

    Usenko V C, Grosshans F 2015 Phys. Rev. A 92 062337Google Scholar

    [45]

    Wang P, Wang X Y, Li J Q, Li Y M 2017 Opt. Express 25 27995Google Scholar

    [46]

    Wang X Y, Liu W Y, Wang P, Li Y M 2017 Phys. Rev. A 95 062330Google Scholar

    [47]

    Jacobsen C S, Madsen L S, Usenko V C, Filip R, Andersen U L 2018 npj Quantum Inf. 4 32Google Scholar

    [48]

    Liao Q, Guo Y, Xie C L, Huang D, Huang P, Zeng G H 2018 Quantum Inf. Process. 17 113Google Scholar

    [49]

    Usenko V C 2018 Phys. Rev. A 98 032321Google Scholar

    [50]

    Wang P, Wang X Y, Li Y M 2018 Entropy 20 157Google Scholar

    [51]

    Wang X Y, Cao Y X, Wang P, Li Y M 2018 Quantum Inf. Process. 17 344Google Scholar

    [52]

    Bai D Y, Huang P, Zhu Y Q, Ma H X, Xiao T L, Wang T, Zeng G H 2020 Quantum Inf. Process. 19 53Google Scholar

    [53]

    Shen S Y, Dai M W, Zheng X T, Sun Q Y, Guo G C, Han Z F 2019 Phys. Rev. A 100 012325Google Scholar

    [54]

    Zhang H, Ruan X C, Wu X D, Zhang L, Guo Y, Huang D 2019 Quantum Inf. Process. 18 128Google Scholar

    [55]

    Zhao W, Shi R H, Feng Y Y, Huang D 2020 Phys. Lett. A 384 126061Google Scholar

    [56]

    Zhou K L, Chen Z Y, Guo Y, Liao Q 2020 Phys. Lett. A 384 126074Google Scholar

    [57]

    Bian Y M, Huang L Y, Zhang Y C 2021 Entropy 23 294Google Scholar

    [58]

    Hu J K, Liao Q, Mao Y, Guo Y 2021 Quantum Inf. Process. 20 31Google Scholar

    [59]

    Zhao W, Shi R H, Wu X M, Wang F Q, Ruan X C 2023 Opt. Express 31 17003Google Scholar

    [60]

    Li Y Y, Wang T Y 2024 J. Phys. B: At. Mol. Opt. Phys. 57 145502Google Scholar

    [61]

    Zhao R B, Zhou J, Shi R H, Shi J J 2024 Ann. Phys. 536 2300401Google Scholar

    [62]

    Zheng Y, Huang P, Huang A Q, Peng J Y, Zeng G H 2019 Opt. Express 27 27369Google Scholar

    [63]

    Zheng Y, Huang P, Huang A Q, Peng J Y, Zeng G H 2019 Phys. Rev. A 100 012313Google Scholar

    [64]

    Wang P, Wang X Y, Li Y M 2020 Phys. Rev. A 102 022609Google Scholar

    [65]

    Li C Y, Qian L, Lo H K 2021 npj Quantum Inf. 7 150Google Scholar

    [66]

    Serafini A, Paris M G A, Illuminati F, Siena S D 2005 J. Opt. B: Quantum Semiclassical Opt. 7 R19Google Scholar

  • 图 1  一维高斯调制连续变量量子密钥分发模型 (a)准备测量方案; (b)基于纠缠方案

    Fig. 1.  Unidimensional Gaussian modulation continuous-variable quantum key distribution models: (a) Preparation and measurement scheme; (b) entanglement-based scheme.

    图 2  (a)实际的光脉冲强度$ I' $随时间$t$呈现出动态变化; (b)在相空间中, 由于源强度误差的影响, 实际制备的相干态可能会偏离目标相干态的位置

    Fig. 2.  (a) Actual optical pulse intensity dynamically changes over time; (b) the actual prepared coherent state may deviate from the target coherent state’s location in the phase space under the influence of source intensity errors.

    图 3  (a)不同均匀分布强度波动下密钥率随着传输距离的变化; (b)不同高斯分布强度波动下密钥率随着传输距离的变化

    Fig. 3.  (a) Comparison of secret key rates at various transmission distances for intensity fluctuation models following a uniform distribution; (b) comparison of secret key rates at various transmission distances for intensity fluctuation models adhering to a Gaussian distribution.

    图 4  不同源强度误差对协议性能的影响

    Fig. 4.  Influence of different source intensity errors on protocol performance.

    图 5  不同码长下协议性能比较 (a) 考虑第二种源误差模型; (b) 考虑第三种源误差模型

    Fig. 5.  Comparison of protocol performance under different total exchanged signals sizes: (a) Considering the second source error model; (b) considering the third source error model.

    图 6  $N = {10^{10}}$码长下不同源误差对应的协议密钥率和传输距离 (a) 考虑第二种源误差模型; (b) 考虑第三种源误差模型

    Fig. 6.  Protocol key rate and transmission distance corresponding to different source errors under the total exchanged signals of $N = {10^{10}}$: (a) Considering the second source error model; (b) considering the third source error model.

  • [1]

    Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (Bangalore: IEEE) p175

    [2]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [3]

    Lo H K, Curty M, Tamaki K 2014 Nat. Photonics 8 595Google Scholar

    [4]

    Bennett C H, Bessette F, Brassard G, Salvail L, Smolin J 1992 J. Cryptology 5 3Google Scholar

    [5]

    Chen Y A, Zhang Q, Chen T Y, Cai W Q, Liao S K, Zhang J, Chen K, Yin J, Ren J G, Chen Z, Han S L, Yu Q, Liang K, Zhou F, Yuan X, Zhao M S, Wang T Y, Jiang X, Zhang L, Liu W Y, Li Y, Shen Q, Cao Y, Lu C Y, Shu R, Wang J Y, Li L, Liu N L, Xu F, Wang X B, Peng C Z, Pan J W 2021 Nature 589 214Google Scholar

    [6]

    Xu F H, Ma X F, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [7]

    Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shamsul Shaari J, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photonics 12 1012Google Scholar

    [8]

    Portmann C, Renner R 2022 Rev. Mod. Phys. 94 025008Google Scholar

    [9]

    Diamanti E, Leverrier A 2015 Entropy 17 6072Google Scholar

    [10]

    Li Y M, Wang X Y, Bai Z L, Liu W Y, Yang S S, Peng K C 2017 Chin. Phys. B 26 040303Google Scholar

    [11]

    Guo H, Li Z Y, Yu S, Zhang Y C 2021 Fundam. Res. 1 96Google Scholar

    [12]

    Zhang Y C, Bian Y M, Li Z Y, Yu S, Guo H 2024 Appl. Phys. Rev. 11 011318Google Scholar

    [13]

    Lin J, Upadhyaya T, Lütkenhaus N 2019 Phys. Rev. X 9 041064Google Scholar

    [14]

    Du S N, Tian Y, Li Y M 2020 Phys. Rev. Appl. 14 024013Google Scholar

    [15]

    Li L, Huang P, Wang T, Zeng G H 2021 Phys. Rev. A 103 032611Google Scholar

    [16]

    Liao Q, Wang Z, Liu H J, Mao Y Y, Fu X Q 2022 Phys. Rev. A 106 022607Google Scholar

    [17]

    Liu J Q, Cao Y X, Wang P, Liu S S, Lu Z G, Wang X Y, Li Y M 2022 Opt. Express 30 27912Google Scholar

    [18]

    吴晓东, 黄端, 黄鹏, 郭迎 2022 物理学报 71 240304Google Scholar

    Wu X D, Huang D, Huang P, Guo Y 2022 Acta Phys. Sin. 71 240304Google Scholar

    [19]

    廖骎, 柳海杰, 王铮, 朱凌瑾 2023 物理学报 72 040301Google Scholar

    Liao Q, Liu H J, Wang Z, Zhu L J 2023 Acta Phys. Sin. 72 040301Google Scholar

    [20]

    Huang L Y, Wang X Y, Chen Z Y, Sun Y H, Yu S, Guo H 2023 Phys. Rev. Appl. 19 014023Google Scholar

    [21]

    Zapatero V, van Leent T, Arnon-Friedman R, Liu W Z, Zhang Q, Weinfurter H, Curty M 2023 npj Quantum Inf. 9 10Google Scholar

    [22]

    Xu Y H, Wang T, Liao X J, Zhou Y M, Huang P, Zeng G H 2024 Photonics Res. 12 2549Google Scholar

    [23]

    Fletcher A I, Harney C, Ghalaii M, Papanastasiou P, Mountogiannakis A, Spedalieri G, Hajomer A A E, Gehring T, Pirandola S 2025 arXiv: 2501.09818 [quant-ph]

    [24]

    Wang P, Wang X Y, Li Y M 2019 Phys. Rev. A 99 042309Google Scholar

    [25]

    Zhang Y C, Chen Z Y, Pirandola S, Wang X Y, Zhou C, Chu B J, Zhao Y J, Xu B J, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502Google Scholar

    [26]

    Dequal D, Trigo Vidarte L, Roman Rodriguez V, Vallone G, Villoresi P, Leverrier A, Diamanti E 2021 npj Quantum Inf. 7 3Google Scholar

    [27]

    Jeong S, Jung H, Ha J 2022 npj Quantum Inf. 8 6Google Scholar

    [28]

    Ma L, Yang J, Zhang T, Shao Y, Liu J L, Luo Y J, Wang H, Huang W, Fan F, Zhou C, Zhang L L, Zhang S, Zhang Y C, Li Y, Xu B J 2023 Sci. China Inf. Sci. 66 180507Google Scholar

    [29]

    Pi Y D, Wang H, Pan Y, Shao Y, Li Y, Yang J, Zhang Y C, Huang W, Xu B J 2023 Opt. Lett. 48 1766Google Scholar

    [30]

    Wang P, Zhang Y, Lu Z G, Wang X Y, Li Y M 2023 New J. Phys. 25 023019Google Scholar

    [31]

    Yang S S, Yan Z L, Yang H Z, Lu Q, Lu Z G, Cheng L Y, Miao X Y, Li Y M 2023 EPJ Quantum Technol. 10 40Google Scholar

    [32]

    Chen Z Y, Wang X Y, Yu S, Li Z Y, Guo H 2023 npj Quantum Inf. 9 28Google Scholar

    [33]

    Hajomer A A E, Derkach I, Jain N, Chin H M, Andersen U L, Gehring T 2024 Sci. Adv. 10 eadi9474Google Scholar

    [34]

    Zhang G, Haw J Y, Cai H, Xu F, Assad S M, Fitzsimons J F, Zhou X, Zhang Y, Yu S, Wu J, Ser W, Kwek L C, Liu A Q 2019 Nat. Photonics 13 839Google Scholar

    [35]

    Qi B, Gunther H, Evans P G, Williams B P, Camacho R M, Peters N A 2020 Phys. Rev. Appl. 13 054065Google Scholar

    [36]

    Milovančev D, Vokić N, Laudenbach F, Pacher C, Hübel H, Schrenk B 2021 J. Lightwave Technol. 39 3445Google Scholar

    [37]

    Tian Y, Wang P, Liu J Q, Du S N, Liu W Y, Lu Z G, Wang X Y, Li Y M 2022 Optica 9 492Google Scholar

    [38]

    Du S N, Wang P, Liu J Q, Tian Y, Li Y M 2023 Photonics Res. 11 463Google Scholar

    [39]

    Wang X Y, Chen Z Y, Li Z H, Qi D K, Yu S, Guo H 2023 Opt. Lett. 48 3327Google Scholar

    [40]

    Zhang M Q, Huang P, Wang P, Wei S R, Zeng G H 2023 Opt. Lett. 48 1184Google Scholar

    [41]

    Hajomer A A E, Bruynsteen C, Derkach I, Jain N, Bomhals A, Bastiaens S, Andersen U L, Yin X, Gehring T 2024 Optica 11 1197Google Scholar

    [42]

    Hajomer A A E, Derkach I, Filip R, Andersen U L, Usenko V C, Gehring T 2024 Light Sci. Appl. 13 291Google Scholar

    [43]

    Ji F Y, Huang P, Wang T, Jiang X Q, Zeng G H 2024 Photonics Res. 12 1485Google Scholar

    [44]

    Usenko V C, Grosshans F 2015 Phys. Rev. A 92 062337Google Scholar

    [45]

    Wang P, Wang X Y, Li J Q, Li Y M 2017 Opt. Express 25 27995Google Scholar

    [46]

    Wang X Y, Liu W Y, Wang P, Li Y M 2017 Phys. Rev. A 95 062330Google Scholar

    [47]

    Jacobsen C S, Madsen L S, Usenko V C, Filip R, Andersen U L 2018 npj Quantum Inf. 4 32Google Scholar

    [48]

    Liao Q, Guo Y, Xie C L, Huang D, Huang P, Zeng G H 2018 Quantum Inf. Process. 17 113Google Scholar

    [49]

    Usenko V C 2018 Phys. Rev. A 98 032321Google Scholar

    [50]

    Wang P, Wang X Y, Li Y M 2018 Entropy 20 157Google Scholar

    [51]

    Wang X Y, Cao Y X, Wang P, Li Y M 2018 Quantum Inf. Process. 17 344Google Scholar

    [52]

    Bai D Y, Huang P, Zhu Y Q, Ma H X, Xiao T L, Wang T, Zeng G H 2020 Quantum Inf. Process. 19 53Google Scholar

    [53]

    Shen S Y, Dai M W, Zheng X T, Sun Q Y, Guo G C, Han Z F 2019 Phys. Rev. A 100 012325Google Scholar

    [54]

    Zhang H, Ruan X C, Wu X D, Zhang L, Guo Y, Huang D 2019 Quantum Inf. Process. 18 128Google Scholar

    [55]

    Zhao W, Shi R H, Feng Y Y, Huang D 2020 Phys. Lett. A 384 126061Google Scholar

    [56]

    Zhou K L, Chen Z Y, Guo Y, Liao Q 2020 Phys. Lett. A 384 126074Google Scholar

    [57]

    Bian Y M, Huang L Y, Zhang Y C 2021 Entropy 23 294Google Scholar

    [58]

    Hu J K, Liao Q, Mao Y, Guo Y 2021 Quantum Inf. Process. 20 31Google Scholar

    [59]

    Zhao W, Shi R H, Wu X M, Wang F Q, Ruan X C 2023 Opt. Express 31 17003Google Scholar

    [60]

    Li Y Y, Wang T Y 2024 J. Phys. B: At. Mol. Opt. Phys. 57 145502Google Scholar

    [61]

    Zhao R B, Zhou J, Shi R H, Shi J J 2024 Ann. Phys. 536 2300401Google Scholar

    [62]

    Zheng Y, Huang P, Huang A Q, Peng J Y, Zeng G H 2019 Opt. Express 27 27369Google Scholar

    [63]

    Zheng Y, Huang P, Huang A Q, Peng J Y, Zeng G H 2019 Phys. Rev. A 100 012313Google Scholar

    [64]

    Wang P, Wang X Y, Li Y M 2020 Phys. Rev. A 102 022609Google Scholar

    [65]

    Li C Y, Qian L, Lo H K 2021 npj Quantum Inf. 7 150Google Scholar

    [66]

    Serafini A, Paris M G A, Illuminati F, Siena S D 2005 J. Opt. B: Quantum Semiclassical Opt. 7 R19Google Scholar

  • [1] 郭晓敏, 王岐岐, 罗越, 宋智杰, 李正雅, 瞿毅坤, 郭龑强, 肖连团. 实时熵源评估二重并行连续变量量子随机数发生器. 物理学报, 2025, 74(11): . doi: 10.7498/aps.74.20250333
    [2] 孙新, 郭俊杰, 陈宇杰, 程锦, 刘奥, 刘文博, 尹鹏, 陈兰剑, 吴田宜, 东晨. 空间信道离散调制连续变量量子密钥分发可行性分析. 物理学报, 2025, 74(9): 090303. doi: 10.7498/aps.74.20241682
    [3] 贺英, 王天一, 李莹莹. 线性光学克隆机改进的离散极化调制连续变量量子密钥分发可组合安全性分析. 物理学报, 2024, 73(23): 230303. doi: 10.7498/aps.73.20241094
    [4] 张光伟, 白建东, 颉琦, 靳晶晶, 张永梅, 刘文元. 连续变量量子密钥分发系统中动态偏振控制研究. 物理学报, 2024, 73(6): 060301. doi: 10.7498/aps.73.20231890
    [5] 吴晓东, 黄端. 基于非理想测量基选择的水下连续变量量子密钥分发方案. 物理学报, 2024, 73(21): 210302. doi: 10.7498/aps.73.20240804
    [6] 张云杰, 王旭阳, 张瑜, 王宁, 贾雁翔, 史玉琪, 卢振国, 邹俊, 李永民. 基于硬件同步的四态离散调制连续变量量子密钥分发. 物理学报, 2024, 73(6): 060302. doi: 10.7498/aps.73.20231769
    [7] 吴晓东, 黄端. 基于非高斯态区分探测的往返式离散调制连续变量量子密钥分发方案. 物理学报, 2023, 72(5): 050303. doi: 10.7498/aps.72.20222253
    [8] 廖骎, 柳海杰, 王铮, 朱凌瑾. 基于不可信纠缠源的高斯调制连续变量量子密钥分发. 物理学报, 2023, 72(4): 040301. doi: 10.7498/aps.72.20221902
    [9] 吴晓东, 黄端, 黄鹏, 郭迎. 基于实际探测器补偿的离散调制连续变量测量设备无关量子密钥分发方案. 物理学报, 2022, 71(24): 240304. doi: 10.7498/aps.71.20221072
    [10] 马啸, 孙铭烁, 刘靖阳, 丁华建, 王琴. 一种基于标记单光子源的态制备误差容忍量子密钥分发协议. 物理学报, 2022, 71(3): 030301. doi: 10.7498/aps.71.20211456
    [11] 毛宜钰, 王一军, 郭迎, 毛堉昊, 黄文体. 基于峰值补偿的连续变量量子密钥分发方案. 物理学报, 2021, 70(11): 110302. doi: 10.7498/aps.70.20202073
    [12] 叶炜, 郭迎, 夏莹, 钟海, 张欢, 丁建枝, 胡利云. 基于量子催化的离散调制连续变量量子密钥分发. 物理学报, 2020, 69(6): 060301. doi: 10.7498/aps.69.20191689
    [13] 曹正文, 张爽浩, 冯晓毅, 赵光, 柴庚, 李东伟. 基于散粒噪声方差实时监测的连续变量量子密钥分发系统的设计与实现. 物理学报, 2017, 66(2): 020301. doi: 10.7498/aps.66.020301
    [14] 刘建强, 王旭阳, 白增亮, 李永民. 时域脉冲平衡零拍探测器的高精度自动平衡. 物理学报, 2016, 65(10): 100303. doi: 10.7498/aps.65.100303
    [15] 徐兵杰, 唐春明, 陈晖, 张文政, 朱甫臣. 利用无噪线性光放大器增加连续变量量子密钥分发最远传输距离. 物理学报, 2013, 62(7): 070301. doi: 10.7498/aps.62.070301
    [16] 沈咏, 邹宏新. 离散调制连续变量量子密钥分发的安全边界. 物理学报, 2010, 59(3): 1473-1480. doi: 10.7498/aps.59.1473
    [17] 朱畅华, 陈南, 裴昌幸, 权东晓, 易运晖. 基于信道估计的自适应连续变量量子密钥分发方法. 物理学报, 2009, 58(4): 2184-2188. doi: 10.7498/aps.58.2184
    [18] 王 开, 裴文江, 邹留华, 何振亚. 一种多混沌系统公钥密码算法的安全性分析. 物理学报, 2006, 55(12): 6243-6247. doi: 10.7498/aps.55.6243
    [19] 张权, 唐朝京, 张森强. B92量子密钥分配协议的变形及其无条件安全性证明. 物理学报, 2002, 51(7): 1439-1447. doi: 10.7498/aps.51.1439
    [20] 杨理, 吴令安, 刘颂豪. 复合量子密钥分发系统双速协议及其安全性分析. 物理学报, 2002, 51(11): 2446-2451. doi: 10.7498/aps.51.2446
计量
  • 文章访问数:  302
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-07
  • 修回日期:  2025-02-05
  • 上网日期:  2025-02-25

/

返回文章
返回