搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于四波混频的三组份全光量子导引交换

李晓玲 翟淑琴 刘奎

引用本文:
Citation:

基于四波混频的三组份全光量子导引交换

李晓玲, 翟淑琴, 刘奎

Tripartite all-optical quantum steering swapping based on four-wave mixing process

LI Xiaoling, ZHAI Shuqin, LIU Kui
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 量子导引, 作为一种特殊的量子关联, 相较于量子纠缠和贝尔非局域性, 展现出了特有的不对称性. 这种不对称性使得两个独立的光学模式之间, 通过量子导引交换可以建立单向或双向的导引, 这对构建非对称量子网络具有至关重要的意义. 本文提出了基于三组份与两组份纠缠态的全光学量子导引交换方案, 这一方案利用低噪声、高带宽的四波混频过程, 无测量地实现了传统方案中贝尔态测量的功能, 避免了光电和电光转换. 在导引交换操作后, 原本独立的无直接相互作用的两个纠缠态产生了量子导引. 具体研究了四波混频过程联合线性分束器或非线性分束器两种交换方案, 研究发现, 通过调节线性分束器的透射率和四波混频过程的增益, 可以实现三模间的量子导引. 这为单向量子通信和量子信息处理提供了新的可能性, 使得量子资源的利用更加安全和可控.
    Quantum resource swapping is crucial for establishing quantum networks and achieving efficient quantum communication and it allows quantum resources to be shared and allocated between nodes in a quantum network, thereby enhancing network flexibility and quantum information processing capabilities. Quantum steering is a special type of quantum correlation that exhibits unique asymmetry compared with quantum entanglement and Bell nonlocality. This asymmetry enables quantum steering swapping to establish one-way or two-way asymmetry quantum steering between two independent optical modes, which is crucial for constructing asymmetric quantum networks. In this work, an all-optical quantum steering swapping scheme is proposed based on tripartite entangled state and bipartite entangled state. The all-optical scheme does not involve optic-electro conversion nor electro-optic conversion, but utilizes a low-noise, high-bandwidth four-wave mixing process to achieve the function of Bell state measurement in traditional schemes without measurement. After the steering swapping operation, the two originally independent entangled states without direct interaction generate quantum steering. In this work, two swapping schemes in the four-wave mixing processes, combined with linear beam splitter and nonlinear beam splitter, are investigated. By analyzing the steering characteristics of the output modes, both schemes exhibit varieties of multipartite steering types. By adjusting the transmissivity of the linear beam splitter and the gain of the four-wave mixing process, the steering relationship can be flexibly manipulated to achieve one-way and two-way asymmetry steering. This provides new possibilities for one-way quantum communication and quantum information processing, making the utilization of quantum resources more efficient and controllable. Through in-depth analysis of the steering characteristics after swapping, it is found that compared with the linear beam splitter scheme, the nonlinear beam splitter scheme not only significantly improves the capability of quantum steering, but also allows for more flexible manipulation of monogamy relations of quantum steering. By optimizing the gain parameters of the nonlinear beam splitter, the precise manipulation of the monogamy relations can be achieved over a wider range. This not only expands broader application prospects for information processing and quantum communication in quantum networks, but also lays an important foundation for building efficient and secure quantum information processing systems.Optomicrowave entanglement and optomagnonic entanglement havesignificant applications in constructing hybrid quantum network andoptical controlling magnons. In this paper, a theoretical scheme ofenhancing optomicrowave and optomagnonic entanglements is proposed, based on a coherent-feedback-assisted optomagnomechanical (OMM)system. By inserting a thin membrane between the input-output mirrorand the high-reflective-mirror-attached the YIG bridge, the systemconsists of four kinds of modes: optical mode, microwave mode, mechanical mode, and magnon mode. In this system, optical andmicrowave modes interact with each other through the mechanical mode, while the magnon mode couples with the microwave mode throughmagnetic-dipole interaction. The variations of the optomicrowave andoptomagnonic entanglements with different detunings, coupling strengths, and decay rates are thoroughly investigated. Furthermore, the optimalcoherent feedback parameters and the physical mechanisms of generatingand transferring entanglement are analyzed, and the entanglementenhancements by adding the feedback loop are discussed. The resultsshow that both optomicrowave and optomagnonic entanglements can besignificantly and stably enhanced over a wide range of parameters, withcoherent feedback. Our findings provide a theoretical basis for connectingdifferent nodes (different physical systems) to construct hybrid quantumnetworks, flexibly controlling the quantum properties of magnons, andpreparing macroscopic quantum states.
  • 图 1  三组份全光量子导引交换方案示意图 (a) 利用线性分束器方案; (b) 利用非线性分束器方案

    Fig. 1.  Schematic of all-optical quantum steering swapping schemes: (a) Using a linear BS; (b) using a nonlinear BS.

    图 2  在不同透射率${T_1}$和增益${G_1}$下, 两模间的量子导引参数随${G_2}$的变化 (a) ${T_1} = 0.2$时, 模${\hat A_1}$和${\hat C_1}$之间的导引; (b) ${T_1} = 0.5$时, 模${\hat A_1}$和${\hat C_1}$之间的导引; (c) ${T_1} = 0.2$时, 模${\hat B_1}$和${\hat C_1}$之间的导引; (d) ${T_1} = 0.5$时, 模${\hat B_1}$和${\hat C_1}$之间的导引

    Fig. 2.  Steering parameter between any two modes versus ${G_2}$ under different transmissivity ${T_1}$and gain ${G_1}$: (a) The steering between ${\hat A_1}$ and ${\hat C_1}$ $\left( {{T_1} = 0.2} \right)$; (b) the steering between ${\hat A_1}$ and ${\hat C_1}$$\left( {{T_1} = 0.5} \right)$; (c) the steering between ${\hat B_1}$ and ${\hat C_1}$$\left( {{T_1} = 0.2} \right)$; (d) the steering between ${\hat B_1}$and ${\hat C_1}$$\left( {{T_1} = 0.5} \right)$.

    图 3  任意两模间量子导引参数随透射率${T_1}$的变化$ ({G}_{1}={G}_{2}=2) $

    Fig. 3.  Quantum steering parameter between any two modes versus ${T_1}$$ ({G}_{1}={G}_{2}=2) $.

    图 4  一个模式与另外两个模式之间的量子导引参数随透射率${T_1}$的变化$ ({G}_{1}={G}_{2}=2) $ (a) 模式$ {\hat A_1} $和${\hat B_1}$分别作为导引方和被导引方; (b) 模式$ {\hat C_1} $作为导引方和被导引方

    Fig. 4.  Quantum steering parameter between one and the other two modes versus ${T_1}$$ ({G}_{1}={G}_{2}=2) $: (a) Modes $ {\hat A_1} $ and ${\hat B_1}$ serve as steering party and steered party, respectively; (b) mode $ {\hat C_1} $ serves as steering party and steered party.

    图 5  在不同增益${G_1}$下, 两模间的量子导引参数随增益${G_2}$的变化$\left( {{G_4} = 2.5} \right)$ (a) 模${\hat A_2}$和${\hat C_2}$之间的导引; (b) 模${\hat B_2}$和${\hat C_2}$之间的导引

    Fig. 5.  Steering parameter between any two modes versus ${G_2}$ under different gain ${G_1}$$\left( {{G_4} = 2.5} \right)$: (a) The steering between ${\hat A_2}$ and ${\hat C_2}$; (b) the steering between ${\hat B_2}$ and ${\hat C_2}$.

    图 6  任意两模间量子导引参数随增益$ {G_4} $的变化$ ({G}_{1}= $$ {G}_{2}=2) $

    Fig. 6.  Quantum steering parameter between any two modes versus $ {G_4} $$ ({G}_{1}={G}_{2}=2) $.

    图 7  一个模式与另外两个模式之间的量子导引参数随增益${G_4}$的变化$ ({G}_{1}={G}_{2}=2) $: (a) 模式$ {\hat A_2} $和${\hat B_2}$分别作为导引方和被导引方; (b) 模式$ {\hat C_2} $作为导引方和被导引方

    Fig. 7.  Quantum steering parameter between one and the other two modes versus ${G_4}$$ ({G}_{1}={G}_{2}=2) $: (a) Modes $ {\hat A_2} $ and ${\hat B_2}$ serve as steering party and steered party, respectively; (b) mode $ {\hat C_2} $ serves as steering party and steered party.

    图 8  单配性关系的操控$ ({G}_{2}=2) $ (a) 线性分束器方案; (b) 非线性分束器方案

    Fig. 8.  Manipulation of monogamy relationships $ ({G}_{2}=2) $: (a) Using a linear BS; (b) using a nonlinear BS.

  • [1]

    Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777Google Scholar

    [2]

    Schrödinger E 1935 Math. Proc. Camb. Phil. Soc. 31 555

    [3]

    Wiseman H M, Jones S J, Doherty A C 2007 Phys. Rev. Lett. 98 140402Google Scholar

    [4]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865Google Scholar

    [5]

    Schrödinger E 1935 Naturwissenschaften 23 807Google Scholar

    [6]

    Brunner N, Cavalcanti D, Pironio S, Scarani V, Wehner S 2014 Rev. Mod. Phys. 86 419Google Scholar

    [7]

    Bowles J, Vértesi T, Quintino M T, Brunner N 2014 Phys. Rev. Lett. 112 200402Google Scholar

    [8]

    Sun K, Ye X J, Xu J S, Xu X Y, Tang J S, Wu Y C, Chen J L, Li C F, Guo G C 2016 Phys. Rev. Lett. 116 160404Google Scholar

    [9]

    He Q Y, Gong Q H, Reid M D 2015 Phys. Rev. Lett. 114 060402Google Scholar

    [10]

    Branciard C, Cavalcanti E G, Walborn S P, Scarani V, Wiseman H M 2012 Phys. Rev. A 85 010301

    [11]

    Walk N, Hosseini S, Geng J, Thearle O, Haw J Y, Armstrong S, Assad S M, Janousek J, Ralph T C, Symul T, Wiseman H M, Lam P K 2016 Optica 3 634

    [12]

    Reid M D 2013 Phys. Rev. A 88 062338Google Scholar

    [13]

    He Q Y, Rosales-Zárate L, Adesso G, Reid M D 2015 Phys. Rev. Lett. 115 180502Google Scholar

    [14]

    Cleve R, Gottesman D, Lo H K 1999 Phys. Rev. Lett. 83 648Google Scholar

    [15]

    Xiang Y, Kogias I, Adesso G, He Q Y 2017 Phys. Rev. A 95 010101Google Scholar

    [16]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829Google Scholar

    [17]

    Lau H K, Weedbrook C 2013 Phys. Rev. A 88 042313Google Scholar

    [18]

    Xiang Y, Liu Y, Cai Y, Li F, Zhang Y P, He Q Y 2020 Phys. Rev. A 101 053834Google Scholar

    [19]

    Liu Y, Cai Y, Xiang Y, Li F, Zhang Y P, He Q Y 2019 Opt. Express 27 33070Google Scholar

    [20]

    Yuan Z S, Chen Y A, Zhao B, Chen S, Schmiedmayer J, Pan J W 2008 Nature 454 1098Google Scholar

    [21]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar

    [22]

    Liu S S, Lou Y B, Chen Y X, Jing J T 2022 Phys. Rev. Lett. 128 060503Google Scholar

    [23]

    Polkinghorne R E S, Ralph T C 1999 Phys. Rev. Lett. 83 2095Google Scholar

    [24]

    Pan J W, Bouwmeester D, Weinfurter H, Zeilinger A 1998 Phys. Rev. Lett. 80 3891Google Scholar

    [25]

    Jennewein T, Weihs G, Pan J W, Zeilinger A 2001 Phys. Rev. Lett. 88 017903Google Scholar

    [26]

    Ma L X, Lei X, Cheng J L, Yan Z H, Jia X J 2023 Opt. Express 31 8257Google Scholar

    [27]

    Wang M H, Qin Z Z, Su X L 2017 Phys. Rev. A 95 052311Google Scholar

    [28]

    Wang M H, Qin Z Z, Wang Y, Su X L 2017 Phys. Rev. A 96 022307Google Scholar

    [29]

    Wang N, Wang M H, Tian C X, Deng X W, Su X L 2023 Laser Photonics Rev. 18 2300653

    [30]

    Hu Q W, Wang J B, Liu S S, Jing J T 2024 Opt. Lett. 49 2585Google Scholar

    [31]

    Liu S S, Lou Y B, Jing J T 2020 Nat. Commun. 11 3875Google Scholar

    [32]

    Liu S S, Lou Y B, Jing J T 2019 Phys. Rev. Lett. 123 113602Google Scholar

    [33]

    Kogias I, Lee A R, Ragy S, Adesso G 2015 Phys. Rev. Lett. 114 060403Google Scholar

    [34]

    Ralph T C 1999 Opt. Lett. 24 348Google Scholar

  • [1] 杨瑞科, 李福军, 武福平, 卢芳, 魏兵, 周晔. 沙尘湍流大气对自由空间量子通信性能影响研究. 物理学报, doi: 10.7498/aps.71.20221125
    [2] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响. 物理学报, doi: 10.7498/aps.71.20211146
    [3] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性安全量子通信. 物理学报, doi: 10.7498/aps.71.20210907
    [4] 陈以鹏, 刘靖阳, 朱佳莉, 方伟, 王琴. 机器学习在量子通信资源优化配置中的应用. 物理学报, doi: 10.7498/aps.71.20220871
    [5] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性的安全量子通讯. 物理学报, doi: 10.7498/aps.70.20210907
    [6] 翟淑琴, 康晓兰, 刘奎. 基于级联四波混频过程的量子导引. 物理学报, doi: 10.7498/aps.70.20201981
    [7] 聂敏, 王林飞, 杨光, 张美玲, 裴昌幸. 基于分组交换的量子通信网络传输协议及性能分析. 物理学报, doi: 10.7498/aps.64.210303
    [8] 李熙涵. 量子直接通信. 物理学报, doi: 10.7498/aps.64.160307
    [9] 聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸. 中尺度沙尘暴对量子卫星通信信道的影响及性能仿真. 物理学报, doi: 10.7498/aps.63.240303
    [10] 张沛, 周小清, 李智伟. 基于量子隐形传态的无线通信网络身份认证方案. 物理学报, doi: 10.7498/aps.63.130301
    [11] 张琳, 聂敏, 刘晓慧. 有噪量子信道生存函数研究及其仿真. 物理学报, doi: 10.7498/aps.62.150301
    [12] 薛乐, 聂敏, 刘晓慧. 量子信令中继器模型及性能仿真. 物理学报, doi: 10.7498/aps.62.170305
    [13] 朱伟, 聂敏. 量子信令交换机模型设计及性能分析. 物理学报, doi: 10.7498/aps.62.130304
    [14] 李申, 马海强, 吴令安, 翟光杰. 全光纤量子通信系统中的高速偏振控制方案. 物理学报, doi: 10.7498/aps.62.084214
    [15] 何锐. 基于超导量子干涉仪与介观LC共振器耦合电路的量子通信. 物理学报, doi: 10.7498/aps.61.030303
    [16] 宋汉冲, 龚黎华, 周南润. 基于量子远程通信的连续变量量子确定性密钥分配协议. 物理学报, doi: 10.7498/aps.61.154206
    [17] 周小清, 邬云文, 赵晗. 量子隐形传态网络的互联与路由策略. 物理学报, doi: 10.7498/aps.60.040304.2
    [18] 印娟, 钱勇, 李晓强, 包小辉, 彭承志, 杨涛, 潘阁生. 远距离量子通信实验中的高维纠缠源. 物理学报, doi: 10.7498/aps.60.060308
    [19] 周南润, 曾宾阳, 王立军, 龚黎华. 基于纠缠的选择自动重传量子同步通信协议. 物理学报, doi: 10.7498/aps.59.2193
    [20] 周南润, 曾贵华, 龚黎华, 刘三秋. 基于纠缠的数据链路层量子通信协议. 物理学报, doi: 10.7498/aps.56.5066
计量
  • 文章访问数:  358
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-17
  • 修回日期:  2025-02-14
  • 上网日期:  2025-02-24

/

返回文章
返回