搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非高斯态区分探测的往返式离散调制连续变量量子密钥分发方案

吴晓东 黄端

引用本文:
Citation:

基于非高斯态区分探测的往返式离散调制连续变量量子密钥分发方案

吴晓东, 黄端

Plug-and-play discrete modulation continuous variable quantum key distribution based on non-Gaussian state-discrimination detection

Wu Xiao-Dong, Huang Duan
PDF
HTML
导出引用
  • 往返式离散调制连续变量量子密钥分发, 无需使用两台独立的激光器也能本地生成本振光, 并且信号光与本振光均来自于同一台激光器, 在有效保证系统实际安全性的同时, 具有较好的同频特性. 此外, 该方案与高效纠错码具有良好的兼容性, 即使在低信噪比情况下也能获得较高的协商效率. 然而, 基于非可信信源模型的往返式光路结构存在较大的过噪声, 严重限制离散调制方案的最大传输距离. 针对这个问题, 本文提出基于非高斯态区分探测的往返式离散调制连续变量量子密钥分发方案, 即在探测端部署非高斯态区分探测器, 采用自适应测量方法并结合贝叶斯推论, 可以在满足低于标准量子极限错误概率的情况下无条件区分出基于四态离散调制的四种非正交相干态. 本文详细分析了所提出的基于非高斯态区分探测的往返式离散调制连续变量量子密钥分发方案的安全性, 包括渐近情况与有限长效应情况. 仿真结果表明所提出的方案相比于原始方案, 即使在有信源噪声的情况下, 其密钥率与最大传输距离仍然有明显的提升. 这些结果表明本方案能够有效降低往返式离散调制连续变量量子密钥分发方案中非可信信源噪声对方案性能的负面影响, 在保证系统实际安全性的同时, 实现更高效、更远传输距离的量子密钥分发.
    Plug-and-play discrete modulation continuous variable quantum key distribution can generate local oscillator light locally without using two independent lasers, and both signal light and local oscillator are generated from the same laser, which can effectively ensure the practical security of the system and have a completely identical frequency characteristic. In addition, this scheme has good compatibility with efficient error correction codes, and can achieve high reconciliation efficiency even at low signal-to-noise ratio. However, there exists large excess noise in the plug-and-play configuration based on the untrusted source model, which seriously limits the maximum transmission distance of the discrete modulation scheme. To solve this problem, we propose a plug-and-play discrete modulation continuous variable quantum key distribution based on non-Gaussian state-discrimination detection. That is to say, a non-Gaussian state-discrimination detector is deployed at the receiver. With adaptive measurement method and Bayesian inference, four non-orthogonal coherent states which are based on four-state discrete modulation can be unconditionally distinguished on condition that the error probability is lower than the standard quantum limit. We analyze the security of the proposed protocol by considering both asymptotic limit and finite-size effect. Simulation results show that the secret key rate and maximum transmission distance are significantly enhanced by using no-Gaussian state-discrimination detection even under the influence of the untrusted source noise compared with the original plug-and-play discrete modulation continuous variable quantum key distribution. These results indicate that the proposed scheme can effectively reduce the negative influence of the untrust source noise on the performance of the plug-and-play discrete modulation continuous variable quantum key distribution protocol. The proposed protocol can not only ensure the practical security of the system, but also achieve more efficient and longer transmission distance quantum key distribution.
      通信作者: 黄端, duanhuang@csu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61972418, 61977062, 61801522)和福建工程学院科研启动基金(批准号: GY-Z22042)资助的课题.
      Corresponding author: Huang Duan, duanhuang@csu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61972418, 61977062, 61801522) and the Scientific Research Initiation Fund of Fujian University of Technology, China (Grant No. GY-Z22042).
    [1]

    Xu F, Ma X, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [2]

    Pirandola S, Andersen U L, Banchi L, et al. 2020 Adv. Opt. Photon. 12 1012Google Scholar

    [3]

    Liu H, Jiang C, Zhu H T, et al. 2021 Phys. Rev. Lett. 126 250502Google Scholar

    [4]

    Lo H K, Chau H F 1999 Science 283 2050Google Scholar

    [5]

    Shor P W, Preskill J 2000 Phys. Rev. Lett. 85 441Google Scholar

    [6]

    Yin J, Li Y H, Liao S K, et al. 2020 Nature 582 501Google Scholar

    [7]

    Fang X T, Zeng P, Liu H, et al. 2020 Nat. Photonics 14 422Google Scholar

    [8]

    Chen J P, Zhang C, Liu Y, et al. 2021 Nat. Photonics 15 570Google Scholar

    [9]

    Laudenbach F, Pacher C, Fung C H F, Poppe A, Peev M, Schrenk B, Hentschel M, Walther P, Hübel H 2018 Adv. Quantum Technol. 1 1800011Google Scholar

    [10]

    Wu X D, Wang Y J, Huang D, Guo Y 2020 Front. Phys. 15 31601Google Scholar

    [11]

    Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902Google Scholar

    [12]

    钟海, 叶炜, 吴晓东, 郭迎 2021 物理学报 70 020301Google Scholar

    Zhong H, Ye W, Wu X D, Guo Y 2021 Acta Phys. Sin. 70 020301Google Scholar

    [13]

    Grosshans F, Assche G V, Wenger J, Brouri R, Cerf N J, Grangier P 2003 Nature (London) 421 238

    [14]

    Huang D, Huang P, Lin D, Zeng G 2016 Sci. Rep. 6 19201Google Scholar

    [15]

    Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P, Diamanti E 2013 Nat. Photonics 7 378Google Scholar

    [16]

    Huang D, Lin D, Wang C, Liu W, Fang S, Peng J, Huang P, Zeng G 2015 Opt. Express 23 17511Google Scholar

    [17]

    Zhang Y, Chen Z, Pirandola S, Wang X, Zhou C, Chu B, Zhao Y, Xu B, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502Google Scholar

    [18]

    Huang D, Huang P, Li H, Wang T, Zhou Y, Zeng G 2016 Opt. Lett. 41 3511Google Scholar

    [19]

    Ma X C, Sun S H, Jiang M S, Liang L M 2013 Phys. Rev. A 88 022339Google Scholar

    [20]

    Ma X C, Sun S H, Jiang M S, Liang L M 2013 Phys. Rev. A 87 052309Google Scholar

    [21]

    Jouguet P, Kunz-Jacques S, Diamanti E 2013 Phys. Rev. A 87 062313Google Scholar

    [22]

    Qin H, Kumar R, Alléaume R 2016 Phys. Rev. A 94 012325Google Scholar

    [23]

    Qi B, Lougovski P, Pooser R, Grice W, Bobrek M 2015 Phys. Rev. X 5 041009Google Scholar

    [24]

    Soh D B S, Brif C, Coles P J, Lütkenhaus N, Camacho R M, Urayama J, Sarovar M 2015 Phys. Rev. X 5 041010Google Scholar

    [25]

    Huang D, Lin D K, Huang P, Zeng G H 2015 Opt. Lett. 40 3695Google Scholar

    [26]

    Marie A, Alléaume R 2017 Phys. Rev. A 95 012316Google Scholar

    [27]

    Wang T, Huang P, Zhou Y, Liu W, Zeng G 2018 Phys. Rev. A 97 012310Google Scholar

    [28]

    Wu X, Wang Y, Guo Y, Zhong H, Huang D 2021 Phys. Rev. A 103 032604Google Scholar

    [29]

    Huang D, Huang P, Wang T, Li H, Zhou Y, Zeng G 2016 Phys. Rev. A 94 032305Google Scholar

    [30]

    Silberhorn C, Ralph T C, Lütkenhaus N, Leuchs G 2002 Phys. Rev. Lett. 89 167901Google Scholar

    [31]

    Leverrier A, Grangier P 2009 Phys. Rev. Lett. 102 180504Google Scholar

    [32]

    Becerra F E, Fan J, Baumgartner G, Goldhar J, Kosloski J T, Migdall A 2013 Nat. Photonics 7 147Google Scholar

    [33]

    Becerra F E, Fan J, Migdall A 2013 Nat. Commun. 4 2028Google Scholar

    [34]

    Becerra F E, Fan J, Baumgartner G, Polyakov S V, Goldhar J, Kosloski J T, Migdall A 2011 Phys. Rev. A 84 062324Google Scholar

    [35]

    Helstrom C W 1976 Quantum Detection and Estimation Theory (Mathematics in Science and Engineering) (Vol. 123) (New York: Academic)

    [36]

    Liao Q, Guo Y, Huang D, Huang P, Zeng G 2018 New J. Phys. 20 023015Google Scholar

    [37]

    Shen Y, Peng X, Yang J, Guo H 2011 Phys. Rev. A 83 052304Google Scholar

    [38]

    Wu X D, Wang Y J, Zhong H, Liao Q, Guo Y 2019 Front. Phys. 14 41501Google Scholar

    [39]

    Wu X, Wang Y, Zhong H, Ye W, Huang D, Guo Y 2020 Quantum Inf. Process. 19 234Google Scholar

    [40]

    Navascués M, Acín A 2005 Phys. Rev. Lett. 94 020505Google Scholar

    [41]

    García-Patrón R, Cerf N J 2006 Phys. Rev. Lett. 97 190503Google Scholar

    [42]

    Pirandola S, Braunstein S L, Lloyd S 2008 Phys. Rev. Lett. 101 200504Google Scholar

    [43]

    Renner R, Cirac J I 2009 Phys. Rev. Lett. 102 110504Google Scholar

    [44]

    Leverrier A, Grosshans F, Grangier P 2010 Phys. Rev. A 81 062343Google Scholar

    [45]

    Pirandola S, Laurenza R, Ottaviani C, Banchi L 2017 Nat. Commun. 8 15043Google Scholar

  • 图 1  基于非高斯态区分探测的往返式离散调制CV-QKD制备-测量方案图. DM为离散调制, RNG为随机数发生器, M为调制器, QPSK为正交相移键控, PIA为相位非敏感放大器, FM为法拉第镜, BS为分束器, LO为本振光, $ T $表示非可信信道的透过率, $ \xi $表示信道过噪声, g表示相位非敏感放大器的增益参数

    Fig. 1.  Prepare-and-measure version of plug-and-play discrete modulation CV-QKD protocol based on non-Gaussian state-discrimination detection. DM, discrete modulation; RNG, random number generator; M, modulator; QPSK, quadrature phase shift keying; PIA, phase insensitive amplifier; FM, Faraday mirror; BS, beam splitter; LO, local oscillator; $ T $, transmission efficiency; $ \xi $, channel excess noise; g, gain parameters of phase insensitive amplifier.

    图 2  基于非高斯态区分探测的往返式离散调制CV-QKD纠缠模型原理图

    Fig. 2.  Schematic diagram of the entanglement-based (EB) model of plug-and-play discrete modulation CV-QKD protocol based on state-discrimination detection.

    图 3  非高斯态区分探测器原理图. PNRD为光子数分辨探测器

    Fig. 3.  Schematic diagram of non-Gaussian state discrimination detector. PNRD, photon-number-resolving detector.

    图 4  不同增益参数$g$下基于非高斯态区分探测的往返式离散调制CV-QKD方案的渐近密钥率和传输距离的关系

    Fig. 4.  The relationship between the asymptotic secret key rate of plug-and-play discrete modulation CV-QKD protocol based on non-Gaussian state-discrimination detection and the transmission distance under different gain $g$.

    图 5  在实际信源($g = 1.005$)与不同传输距离$L$下, 基于非高斯态区分探测的往返式离散调制CV-QKD方案的渐近密钥率与协商效率的关系

    Fig. 5.  The relationship between the asymptotic secret key rate of plug-and-play discrete modulation CV-QKD protocol based on non-Gaussian state-discrimination detection and the reconciliation efficiency under practical source($g = 1.005$) and different transmission distance $L$.

    图 6  不同传输距离下L下, 基于非高斯态区分探测的往返式离散调制CV-QKD方案的信噪比与增益参数g (不同的信源条件)的关系

    Fig. 6.  The relationship between the signal-to-noise ratio of plug-and-play discrete modulation CV-QKD protocol based on non-Gaussian state-discrimination detection and the gain g (different source conditions) under different transmission distance L.

    图 7  在不同的有效数据总长度$F$下基于非高斯态区分探测的往返式离散调制CV-QKD方案有限长密钥率与传输距离的关系 (a) $g = 1$; (b) $g = 1.003$; (c) $g = 1.005$; (d) $g = 1.01$

    Fig. 7.  The relationship between the finite-size secret key rate of plug-and-play discrete modulation CV-QKD protocol based on non-Gaussian state-discrimination detection and the transmission distance under different total exchanged signals $F$: (a) $g = 1$; (b) $g = 1.003$; (c) $g = 1.005$; (d) $g = 1.01$.

  • [1]

    Xu F, Ma X, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [2]

    Pirandola S, Andersen U L, Banchi L, et al. 2020 Adv. Opt. Photon. 12 1012Google Scholar

    [3]

    Liu H, Jiang C, Zhu H T, et al. 2021 Phys. Rev. Lett. 126 250502Google Scholar

    [4]

    Lo H K, Chau H F 1999 Science 283 2050Google Scholar

    [5]

    Shor P W, Preskill J 2000 Phys. Rev. Lett. 85 441Google Scholar

    [6]

    Yin J, Li Y H, Liao S K, et al. 2020 Nature 582 501Google Scholar

    [7]

    Fang X T, Zeng P, Liu H, et al. 2020 Nat. Photonics 14 422Google Scholar

    [8]

    Chen J P, Zhang C, Liu Y, et al. 2021 Nat. Photonics 15 570Google Scholar

    [9]

    Laudenbach F, Pacher C, Fung C H F, Poppe A, Peev M, Schrenk B, Hentschel M, Walther P, Hübel H 2018 Adv. Quantum Technol. 1 1800011Google Scholar

    [10]

    Wu X D, Wang Y J, Huang D, Guo Y 2020 Front. Phys. 15 31601Google Scholar

    [11]

    Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902Google Scholar

    [12]

    钟海, 叶炜, 吴晓东, 郭迎 2021 物理学报 70 020301Google Scholar

    Zhong H, Ye W, Wu X D, Guo Y 2021 Acta Phys. Sin. 70 020301Google Scholar

    [13]

    Grosshans F, Assche G V, Wenger J, Brouri R, Cerf N J, Grangier P 2003 Nature (London) 421 238

    [14]

    Huang D, Huang P, Lin D, Zeng G 2016 Sci. Rep. 6 19201Google Scholar

    [15]

    Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P, Diamanti E 2013 Nat. Photonics 7 378Google Scholar

    [16]

    Huang D, Lin D, Wang C, Liu W, Fang S, Peng J, Huang P, Zeng G 2015 Opt. Express 23 17511Google Scholar

    [17]

    Zhang Y, Chen Z, Pirandola S, Wang X, Zhou C, Chu B, Zhao Y, Xu B, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502Google Scholar

    [18]

    Huang D, Huang P, Li H, Wang T, Zhou Y, Zeng G 2016 Opt. Lett. 41 3511Google Scholar

    [19]

    Ma X C, Sun S H, Jiang M S, Liang L M 2013 Phys. Rev. A 88 022339Google Scholar

    [20]

    Ma X C, Sun S H, Jiang M S, Liang L M 2013 Phys. Rev. A 87 052309Google Scholar

    [21]

    Jouguet P, Kunz-Jacques S, Diamanti E 2013 Phys. Rev. A 87 062313Google Scholar

    [22]

    Qin H, Kumar R, Alléaume R 2016 Phys. Rev. A 94 012325Google Scholar

    [23]

    Qi B, Lougovski P, Pooser R, Grice W, Bobrek M 2015 Phys. Rev. X 5 041009Google Scholar

    [24]

    Soh D B S, Brif C, Coles P J, Lütkenhaus N, Camacho R M, Urayama J, Sarovar M 2015 Phys. Rev. X 5 041010Google Scholar

    [25]

    Huang D, Lin D K, Huang P, Zeng G H 2015 Opt. Lett. 40 3695Google Scholar

    [26]

    Marie A, Alléaume R 2017 Phys. Rev. A 95 012316Google Scholar

    [27]

    Wang T, Huang P, Zhou Y, Liu W, Zeng G 2018 Phys. Rev. A 97 012310Google Scholar

    [28]

    Wu X, Wang Y, Guo Y, Zhong H, Huang D 2021 Phys. Rev. A 103 032604Google Scholar

    [29]

    Huang D, Huang P, Wang T, Li H, Zhou Y, Zeng G 2016 Phys. Rev. A 94 032305Google Scholar

    [30]

    Silberhorn C, Ralph T C, Lütkenhaus N, Leuchs G 2002 Phys. Rev. Lett. 89 167901Google Scholar

    [31]

    Leverrier A, Grangier P 2009 Phys. Rev. Lett. 102 180504Google Scholar

    [32]

    Becerra F E, Fan J, Baumgartner G, Goldhar J, Kosloski J T, Migdall A 2013 Nat. Photonics 7 147Google Scholar

    [33]

    Becerra F E, Fan J, Migdall A 2013 Nat. Commun. 4 2028Google Scholar

    [34]

    Becerra F E, Fan J, Baumgartner G, Polyakov S V, Goldhar J, Kosloski J T, Migdall A 2011 Phys. Rev. A 84 062324Google Scholar

    [35]

    Helstrom C W 1976 Quantum Detection and Estimation Theory (Mathematics in Science and Engineering) (Vol. 123) (New York: Academic)

    [36]

    Liao Q, Guo Y, Huang D, Huang P, Zeng G 2018 New J. Phys. 20 023015Google Scholar

    [37]

    Shen Y, Peng X, Yang J, Guo H 2011 Phys. Rev. A 83 052304Google Scholar

    [38]

    Wu X D, Wang Y J, Zhong H, Liao Q, Guo Y 2019 Front. Phys. 14 41501Google Scholar

    [39]

    Wu X, Wang Y, Zhong H, Ye W, Huang D, Guo Y 2020 Quantum Inf. Process. 19 234Google Scholar

    [40]

    Navascués M, Acín A 2005 Phys. Rev. Lett. 94 020505Google Scholar

    [41]

    García-Patrón R, Cerf N J 2006 Phys. Rev. Lett. 97 190503Google Scholar

    [42]

    Pirandola S, Braunstein S L, Lloyd S 2008 Phys. Rev. Lett. 101 200504Google Scholar

    [43]

    Renner R, Cirac J I 2009 Phys. Rev. Lett. 102 110504Google Scholar

    [44]

    Leverrier A, Grosshans F, Grangier P 2010 Phys. Rev. A 81 062343Google Scholar

    [45]

    Pirandola S, Laurenza R, Ottaviani C, Banchi L 2017 Nat. Commun. 8 15043Google Scholar

  • [1] 吴晓东, 黄端. 基于非理想量子态制备的实际连续变量量子秘密共享方案. 物理学报, 2024, 73(2): 020304. doi: 10.7498/aps.73.20230138
    [2] 张光伟, 白建东, 颉琦, 靳晶晶, 张永梅, 刘文元. 连续变量量子密钥分发系统中动态偏振控制研究. 物理学报, 2024, 73(6): 060301. doi: 10.7498/aps.73.20231890
    [3] 张云杰, 王旭阳, 张瑜, 王宁, 贾雁翔, 史玉琪, 卢振国, 邹俊, 李永民. 基于硬件同步的四态离散调制连续变量量子密钥分发. 物理学报, 2024, 73(6): 060302. doi: 10.7498/aps.73.20231769
    [4] 廖骎, 柳海杰, 王铮, 朱凌瑾. 基于不可信纠缠源的高斯调制连续变量量子密钥分发. 物理学报, 2023, 72(4): 040301. doi: 10.7498/aps.72.20221902
    [5] 王美红, 郝树宏, 秦忠忠, 苏晓龙. 连续变量量子计算和量子纠错研究进展. 物理学报, 2022, 71(16): 160305. doi: 10.7498/aps.71.20220635
    [6] 赵豪, 冯晋霞, 孙婧可, 李渊骥, 张宽收. 连续变量Einstein-Podolsky-Rosen纠缠态光场在光纤信道中分发时纠缠的鲁棒性. 物理学报, 2022, 71(9): 094202. doi: 10.7498/aps.71.20212380
    [7] 文镇南, 易有根, 徐效文, 郭迎. 无噪线性放大的连续变量量子隐形传态. 物理学报, 2022, 71(13): 130307. doi: 10.7498/aps.71.20212341
    [8] 吴晓东, 黄端, 黄鹏, 郭迎. 基于实际探测器补偿的离散调制连续变量测量设备无关量子密钥分发方案. 物理学报, 2022, 71(24): 240304. doi: 10.7498/aps.71.20221072
    [9] 毛宜钰, 王一军, 郭迎, 毛堉昊, 黄文体. 基于峰值补偿的连续变量量子密钥分发方案. 物理学报, 2021, 70(11): 110302. doi: 10.7498/aps.70.20202073
    [10] 叶炜, 郭迎, 夏莹, 钟海, 张欢, 丁建枝, 胡利云. 基于量子催化的离散调制连续变量量子密钥分发. 物理学报, 2020, 69(6): 060301. doi: 10.7498/aps.69.20191689
    [11] 马亚云, 冯晋霞, 万振菊, 高英豪, 张宽收. 连续变量1.34 m量子纠缠态光场的实验制备. 物理学报, 2017, 66(24): 244205. doi: 10.7498/aps.66.244205
    [12] 曹正文, 张爽浩, 冯晓毅, 赵光, 柴庚, 李东伟. 基于散粒噪声方差实时监测的连续变量量子密钥分发系统的设计与实现. 物理学报, 2017, 66(2): 020301. doi: 10.7498/aps.66.020301
    [13] 刘建强, 王旭阳, 白增亮, 李永民. 时域脉冲平衡零拍探测器的高精度自动平衡. 物理学报, 2016, 65(10): 100303. doi: 10.7498/aps.65.100303
    [14] 徐兵杰, 唐春明, 陈晖, 张文政, 朱甫臣. 利用无噪线性光放大器增加连续变量量子密钥分发最远传输距离. 物理学报, 2013, 62(7): 070301. doi: 10.7498/aps.62.070301
    [15] 宋汉冲, 龚黎华, 周南润. 基于量子远程通信的连续变量量子确定性密钥分配协议. 物理学报, 2012, 61(15): 154206. doi: 10.7498/aps.61.154206
    [16] 沈咏, 邹宏新. 离散调制连续变量量子密钥分发的安全边界. 物理学报, 2010, 59(3): 1473-1480. doi: 10.7498/aps.59.1473
    [17] 朱畅华, 陈南, 裴昌幸, 权东晓, 易运晖. 基于信道估计的自适应连续变量量子密钥分发方法. 物理学报, 2009, 58(4): 2184-2188. doi: 10.7498/aps.58.2184
    [18] 何广强, 郭红斌, 李昱丹, 朱思维, 曾贵华. 基于二进制均匀调制相干态的量子密钥分发方案. 物理学报, 2008, 57(4): 2212-2217. doi: 10.7498/aps.57.2212
    [19] 陈进建, 韩正甫, 赵义博, 桂有珍, 郭光灿. 平衡零拍测量对连续变量量子密钥分配的影响. 物理学报, 2007, 56(1): 5-9. doi: 10.7498/aps.56.5
    [20] 翟泽辉, 李永明, 王少凯, 郭 娟, 张天才, 郜江瑞. 连续变量量子离物传态的实验研究. 物理学报, 2005, 54(6): 2710-2716. doi: 10.7498/aps.54.2710
计量
  • 文章访问数:  2861
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-25
  • 修回日期:  2022-12-23
  • 上网日期:  2022-12-27
  • 刊出日期:  2023-03-05

/

返回文章
返回