搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非均匀饱含黏性流体孔隙介质中声波传播及井孔声场分析

彭凡 张秀梅 刘琳 王秀明

引用本文:
Citation:

非均匀饱含黏性流体孔隙介质中声波传播及井孔声场分析

彭凡, 张秀梅, 刘琳, 王秀明

Propagation of acoustic wave and analysis of borehole acoustic field in porous medium of heterogeneous viscous fluid

Peng Fan, Zhang Xiu-Mei, Liu Lin, Wang Xiu-Ming
PDF
HTML
导出引用
  • 声波在饱含流体孔隙介质中的传播特性与流体的黏滞性及孔隙介质的非均匀性密切相关. 本文在Biot理论基础上, 考虑了孔隙流体的剪切应力及孔隙结构的非均匀性, 采用含黏性流体孔隙介质中的波动理论, 研究了孔隙介质中四种体波的频散和衰减特性, 分析了慢横波对快纵波转换散射的影响, 进一步推导了孔隙地层井孔中的模式波及其声场的解析解, 研究了非均匀孔隙介质中井孔模式波和波列的特征. 研究结果表明, 含黏性流体孔隙介质中存在慢横波, 慢横波的频散很强, 其传播特征受到介质孔隙度、渗透率及孔隙流体黏度的影响. 在非均匀孔隙介质中, 与慢横波相关的剪切应力平衡过程不仅导致快纵波的频散和衰减, 还会影响井孔伪瑞利波及斯通利波的传播特征. 本文的工作完善了孔隙介质中声波传播的物理机制, 为孔隙地层井孔声波的解释与应用提供了理论指导.
    Sound field in fluid-saturated porous medium is closely related to the viscosity of fluid and the heterogeneity of porous medium. In order to improve the physical mechanism of wave propagation in porous medium and expand its application in borehole acoustic field, the shear stress of porous fluid and the heterogeneity of pore structure are considered. The wave theory in porous medium containing viscous fluid is deduced based on the Biot theory. The influence of porous medium parameters on slow shear wave is analyzed, and the dispersion and attenuation of elastic wave caused by shear stress balance in porous fluid under the influence of inhomogeneous pore structure are studied. The analytical solution of borehole acoustic field in porous medium containing viscous fluid is further derived. The phase velocity and attenuation of borehole mode waves in heterogeneous porous medium, and the waveform of borehole full wave are calculated. The influence of pore fluid viscosity on borehole full wave is analyzed. The results show that there are slow shear waves in the porous medium containing viscous fluid. The slow shear wave is characterized by low velocity and large attenuation. In heterogeneous porous medium, the balance process of shear stress related to slow shear wave not only leads to the dispersion and attenuation of fast P-wave, but also affects the propagation characteristics of borehole pseudo Rayleigh wave and Stoneley wave. In addition, the pore fluid viscosity has a great influence on the borehole Stoneley wave. The present work improves the physical mechanism of acoustic wave propagation in porous medium and provides theoretical guidance for the explanation and application of borehole acoustic waves in porous formations.
      通信作者: 张秀梅, zhangxiumei@mail.ioa.ac.cn
    • 基金项目: 国家自然科学基金 (批准号: 11974018, 11734017)和中国科学院战略性先导科技专项 (批准号: XDA14020303)资助的课题.
      Corresponding author: Zhang Xiu-Mei, zhangxiumei@mail.ioa.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974018, 11734017) and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA14020303).
    [1]

    李红星, 张嘉辉, 樊嘉伟, 陶春辉, 肖昆, 黄光南, 盛书中, 宫猛 2022 物理学报 71 089101Google Scholar

    Li H X, Zhang J H, Fan J W, Tao C H, Xiao K, Huang G N, Sheng S Z, Gong M 2022 Acta Phys. Sin. 71 089101Google Scholar

    [2]

    乔厚, 何锃, 张恒堃, 彭伟才, 江雯 2019 物理学报 68 128101Google Scholar

    Qiao H, He Y, Zhang H K, Peng W C, Jiang W 2019 Acta Phys. Sin. 68 128101Google Scholar

    [3]

    Benoit G, Heinkélé C, Gourdon E 2013 J. Acoust. Soc. Am. 134 4782Google Scholar

    [4]

    Biot M A 1956 J. Acoust. Soc. Am. 28 168Google Scholar

    [5]

    Biot M A 1956 J. Acoust. Soc. Am. 28 179Google Scholar

    [6]

    Biot M A 1962 J. Appl. Phys. 33 1482Google Scholar

    [7]

    Rosenbaum J H 1974 Geophysics 39 14Google Scholar

    [8]

    Li K S, Gao J, Ju X D, Sun H F 2018 J. Geophys. Eng. 15 2266Google Scholar

    [9]

    杨博, 章成广, 蔡明, 甘泉, 蔡德洋, 朱雷 2019 地球物理学进展 34 1127Google Scholar

    Yang B, Zhang C G, Cai M, Gan Q, Cai D Y, Zhu L 2019 Progress in Geophysics 34 1127Google Scholar

    [10]

    Qi Q M, Fu L Y, Deng J X, Cao J X 2021 Geophysics 86 1Google Scholar

    [11]

    Winkler K W 1985 J. Geophys. Res. Solid Earth 90 6793Google Scholar

    [12]

    Gist G A 1991 J. Acoust. Soc. Am. 90 2370Google Scholar

    [13]

    邓继新, 史謌, 俞军 2003 北京大学学报(自然科学版) 39 835Google Scholar

    Deng J X, Shi X, Yu J 2003 Acta Scientiarum Naturalium Universitatis Pekinensis 39 835Google Scholar

    [14]

    Feng J X, Teng Q Z, He X H, Qing L B, Li Y 2018 Comput. Mater. Sci. 144 181Google Scholar

    [15]

    陈培元, 杨辉廷, 贾兆扬 2018 中国海上油气 30 31Google Scholar

    Chen P Y, Yang H T, Jia Z Y 2018 Chin. Offshore Oil Gas 30 31Google Scholar

    [16]

    Liu Q R, Katsube N 1990 J. Acoust. Soc. Am. 88 1045Google Scholar

    [17]

    魏修成, 卢明辉, 巴晶, 杨慧珠 2008 地球物理学报 51 213Google Scholar

    Wei X C, Lu M H, Ba J, Yang H Z 2008 Chin. J. Geophys. 51 213Google Scholar

    [18]

    Gao W 2016 SEG Technical Program Expanded Abstracts 2016 Dallas, Texas, October 16-21, 2016 pp3871–3875

    [19]

    Sahay P N 2008 Geophysics 73 N19Google Scholar

    [20]

    Ciz R, Gurevich B, Markov M 2006 Geophys. J. Int. 165 957Google Scholar

    [21]

    Müller T M, Gurevich B 2005 J. Acoust. Soc. Am. 117 2732Google Scholar

    [22]

    Mavko G, Nur A 1975 J. Geophys. Res. 80 1444Google Scholar

    [23]

    Dvorkin J, Nur A 1993 Geophysics 58 524Google Scholar

    [24]

    崔志文, 刘金霞, 王春霞, 王克协 2010 物理学报 59 8655Google Scholar

    Cui Z W, Liu J X, Wang C X, Wang K X 2010 Acta Phys. Sin. 59 8655Google Scholar

    [25]

    Berryman J G, Wang H F 2000 Int. J. Rock Mech. Min. Sci. 37 63Google Scholar

    [26]

    赵延林, 曹平, 唐劲舟, 马文豪, 李树清, 王卫军 2017 中南大学学报(自然科学版) 48 168Google Scholar

    Zhao Y L, Cao P, Tang J Z, Ma W H, Li S Q, Wang W J 2017 J. Cent. South Univ. (Sci. Technol.) 48 168Google Scholar

    [27]

    邵婕, 唐杰, 孙成禹 2016 地球物理学进展 31 334Google Scholar

    Shao J, Tang J, Sun C Y 2016 Progr. Geophys. 31 334Google Scholar

    [28]

    Müller T M, Sahay P N 2011 J. Acoust. Soc. Am. 129 2785Google Scholar

    [29]

    Müller T M, Sahay P N 2011 Phys. Rev. E 84 026329

    [30]

    胡恒山, 王克协 2001 地球物理学报 44 135Google Scholar

    Hu H S, Wang K X 2001 Chin. J. Geophys. 44 135Google Scholar

    [31]

    卢明辉, 巴晶, 杨慧珠 2009 工程力学 26 36

    Lu M H, Ba J, Yang H Z 2009 Eng. Mech. 26 36

    [32]

    Zhang X M, Müller T M 2019 Geophysics 84 WA1Google Scholar

    [33]

    Bourbie T, Coussy O, Zinszner B, Junger M C 1992 J. Acoust. Soc. Am. 91 3080Google Scholar

    [34]

    Müller T M, Sahay P N 2011 Appl. Phys. Lett. 98 168Google Scholar

    [35]

    崔志文, 刘金霞, 王克协 2005 吉林大学学报(理学版) 43 803

    Cui Z W, Liu J X, Wang K X 2005 J. Jilin Univ. (Sci. Ed.) 43 803

    [36]

    Markova I, Ronquillo J G, Markov M, Gurevich B 2014 Geophys. J. Int. 196 1082Google Scholar

  • 图 1  四种体波的相速度与衰减 (a) 快纵波; (b) 快横波; (c) 慢纵波; (d) 慢横波

    Fig. 1.  Phase velocity and attenuation of four kinds of body waves: (a) Fast P-wave; (b) fast S-wave; (c) slow P-wave; (d) slow S-wave.

    图 2  慢横波的相速度与衰减随孔隙介质参数的变化  (a) 孔隙度; (b) 渗透率; (c) 流体黏度

    Fig. 2.  Variation of phase velocity and attenuation of slow shear wave with porous media parameters: (a) Porosity; (b) permeability; (c) fluid viscosity.

    图 3  均匀及不同非均匀孔隙介质中快纵波的相速度与衰减

    Fig. 3.  The phase velocity and attenuation of fast P wave in homogeneous porous medium and different inhomogeneous porous media

    图 4  k(ω)的归一化幅值与相位

    Fig. 4.  Normalized amplitude and phase of $ k(\omega ) $.

    图 5  非均匀孔隙介质地层井孔模型

    Fig. 5.  Borehole model of heterogeneous porous media formation.

    图 6  模式波的相速度与衰减 (a) 斯通利波; (b) 一阶伪瑞利波; (c) 二阶伪瑞利波

    Fig. 6.  Phase velocity and attenuation of mode waves: (a) Stoneley wave; (b) the first order pseudo Rayleigh wave; (c) the second order pseudo Rayleigh wave.

    图 7  全波波形 (a) 源距为4 m时的单道波形; (b) 8道阵列全波波形

    Fig. 7.  Full wave waveform: (a) Single channel waveform at source distance of 4 m; (b) 8-channel array full wave waveform.

    图 8  低频斯通利波测井(a)及常规单极子测井(b)的全波波形

    Fig. 8.  Full wave waveform of low-frequency Stoneley wave logging (a) and conventional monopole logging (b).

    图 9  斯通利波的相速度与衰减随孔隙流体黏度的变化

    Fig. 9.  Phase velocity and attenuation of Stoneley wave changing with pore fluid viscosity.

    表 1  孔隙介质参数

    Table 1.  Parameters of porous media.


    ${\rho _{\rm{s}}}$/(kg·m–3)${\rho _{\rm{f}}}$/(kg·m–3)$ {k_0} $/D$ \eta $/%${\mu _{\rm{f}}}$/(Pa·s)$ {S^\infty } $${K_{\rm{f}}}$/GPa$ {K_0} $/GPa${K_{\rm{s}}}$/GPa$ {\mu _0} $/GPa${\mu _{\rm{s}}}$/GPa
    2650100012010–332.2514.3935.71444
    下载: 导出CSV

    表 2  水在不同温度下的黏度

    Table 2.  Viscosity of water at different temperatures.

    温度/℃2050150
    黏度/(10–3 Pa·s)1.000.550.21
    下载: 导出CSV
  • [1]

    李红星, 张嘉辉, 樊嘉伟, 陶春辉, 肖昆, 黄光南, 盛书中, 宫猛 2022 物理学报 71 089101Google Scholar

    Li H X, Zhang J H, Fan J W, Tao C H, Xiao K, Huang G N, Sheng S Z, Gong M 2022 Acta Phys. Sin. 71 089101Google Scholar

    [2]

    乔厚, 何锃, 张恒堃, 彭伟才, 江雯 2019 物理学报 68 128101Google Scholar

    Qiao H, He Y, Zhang H K, Peng W C, Jiang W 2019 Acta Phys. Sin. 68 128101Google Scholar

    [3]

    Benoit G, Heinkélé C, Gourdon E 2013 J. Acoust. Soc. Am. 134 4782Google Scholar

    [4]

    Biot M A 1956 J. Acoust. Soc. Am. 28 168Google Scholar

    [5]

    Biot M A 1956 J. Acoust. Soc. Am. 28 179Google Scholar

    [6]

    Biot M A 1962 J. Appl. Phys. 33 1482Google Scholar

    [7]

    Rosenbaum J H 1974 Geophysics 39 14Google Scholar

    [8]

    Li K S, Gao J, Ju X D, Sun H F 2018 J. Geophys. Eng. 15 2266Google Scholar

    [9]

    杨博, 章成广, 蔡明, 甘泉, 蔡德洋, 朱雷 2019 地球物理学进展 34 1127Google Scholar

    Yang B, Zhang C G, Cai M, Gan Q, Cai D Y, Zhu L 2019 Progress in Geophysics 34 1127Google Scholar

    [10]

    Qi Q M, Fu L Y, Deng J X, Cao J X 2021 Geophysics 86 1Google Scholar

    [11]

    Winkler K W 1985 J. Geophys. Res. Solid Earth 90 6793Google Scholar

    [12]

    Gist G A 1991 J. Acoust. Soc. Am. 90 2370Google Scholar

    [13]

    邓继新, 史謌, 俞军 2003 北京大学学报(自然科学版) 39 835Google Scholar

    Deng J X, Shi X, Yu J 2003 Acta Scientiarum Naturalium Universitatis Pekinensis 39 835Google Scholar

    [14]

    Feng J X, Teng Q Z, He X H, Qing L B, Li Y 2018 Comput. Mater. Sci. 144 181Google Scholar

    [15]

    陈培元, 杨辉廷, 贾兆扬 2018 中国海上油气 30 31Google Scholar

    Chen P Y, Yang H T, Jia Z Y 2018 Chin. Offshore Oil Gas 30 31Google Scholar

    [16]

    Liu Q R, Katsube N 1990 J. Acoust. Soc. Am. 88 1045Google Scholar

    [17]

    魏修成, 卢明辉, 巴晶, 杨慧珠 2008 地球物理学报 51 213Google Scholar

    Wei X C, Lu M H, Ba J, Yang H Z 2008 Chin. J. Geophys. 51 213Google Scholar

    [18]

    Gao W 2016 SEG Technical Program Expanded Abstracts 2016 Dallas, Texas, October 16-21, 2016 pp3871–3875

    [19]

    Sahay P N 2008 Geophysics 73 N19Google Scholar

    [20]

    Ciz R, Gurevich B, Markov M 2006 Geophys. J. Int. 165 957Google Scholar

    [21]

    Müller T M, Gurevich B 2005 J. Acoust. Soc. Am. 117 2732Google Scholar

    [22]

    Mavko G, Nur A 1975 J. Geophys. Res. 80 1444Google Scholar

    [23]

    Dvorkin J, Nur A 1993 Geophysics 58 524Google Scholar

    [24]

    崔志文, 刘金霞, 王春霞, 王克协 2010 物理学报 59 8655Google Scholar

    Cui Z W, Liu J X, Wang C X, Wang K X 2010 Acta Phys. Sin. 59 8655Google Scholar

    [25]

    Berryman J G, Wang H F 2000 Int. J. Rock Mech. Min. Sci. 37 63Google Scholar

    [26]

    赵延林, 曹平, 唐劲舟, 马文豪, 李树清, 王卫军 2017 中南大学学报(自然科学版) 48 168Google Scholar

    Zhao Y L, Cao P, Tang J Z, Ma W H, Li S Q, Wang W J 2017 J. Cent. South Univ. (Sci. Technol.) 48 168Google Scholar

    [27]

    邵婕, 唐杰, 孙成禹 2016 地球物理学进展 31 334Google Scholar

    Shao J, Tang J, Sun C Y 2016 Progr. Geophys. 31 334Google Scholar

    [28]

    Müller T M, Sahay P N 2011 J. Acoust. Soc. Am. 129 2785Google Scholar

    [29]

    Müller T M, Sahay P N 2011 Phys. Rev. E 84 026329

    [30]

    胡恒山, 王克协 2001 地球物理学报 44 135Google Scholar

    Hu H S, Wang K X 2001 Chin. J. Geophys. 44 135Google Scholar

    [31]

    卢明辉, 巴晶, 杨慧珠 2009 工程力学 26 36

    Lu M H, Ba J, Yang H Z 2009 Eng. Mech. 26 36

    [32]

    Zhang X M, Müller T M 2019 Geophysics 84 WA1Google Scholar

    [33]

    Bourbie T, Coussy O, Zinszner B, Junger M C 1992 J. Acoust. Soc. Am. 91 3080Google Scholar

    [34]

    Müller T M, Sahay P N 2011 Appl. Phys. Lett. 98 168Google Scholar

    [35]

    崔志文, 刘金霞, 王克协 2005 吉林大学学报(理学版) 43 803

    Cui Z W, Liu J X, Wang K X 2005 J. Jilin Univ. (Sci. Ed.) 43 803

    [36]

    Markova I, Ronquillo J G, Markov M, Gurevich B 2014 Geophys. J. Int. 196 1082Google Scholar

  • [1] 孙宗利, 康艳霜, 张君霞. 非均匀流体的体积黏度: Maxwell弛豫模型. 物理学报, 2024, 73(6): 066601. doi: 10.7498/aps.73.20231459
    [2] 刘琳, 张秀梅, 王秀明. 孔隙内填充单一固体的固-固孔隙介质中的声波传播. 物理学报, 2022, 71(9): 099101. doi: 10.7498/aps.71.20212012
    [3] 刘迎, 陈志华, 郑纯. 黏性各向异性磁流体Kelvin-Helmholtz不稳定性: 二维数值研究. 物理学报, 2019, 68(3): 035201. doi: 10.7498/aps.68.20181747
    [4] 崔树稳, 刘伟伟, 朱如曾, 钱萍. 关于非均匀系统局部平均压力张量的推导及对均匀流体的分析. 物理学报, 2019, 68(15): 156801. doi: 10.7498/aps.68.20182189
    [5] 苏娜娜, 韩庆邦, 蒋謇. 无限流体中孔隙介质圆柱周向导波的传播特性. 物理学报, 2019, 68(8): 084301. doi: 10.7498/aps.68.20182300
    [6] 王婷, 崔志文, 刘金霞, 王克协. 含少量气泡流体饱和孔隙介质中的弹性波. 物理学报, 2018, 67(11): 114301. doi: 10.7498/aps.67.20180209
    [7] 艾旭鹏, 倪宝玉. 流体黏性及表面张力对气泡运动特性的影响. 物理学报, 2017, 66(23): 234702. doi: 10.7498/aps.66.234702
    [8] 王鹏, 薛纭, 楼智美. 黏性流体中超细长弹性杆的动力学不稳定性. 物理学报, 2017, 66(9): 094501. doi: 10.7498/aps.66.094501
    [9] 陈曦, Yu Whitney, Joglekar Yogesh N, 郑友取, 许友生, 吴锋民. 驱动模式对具有库源平衡的黏性流体中空间反射时间反演联合对称性的影响. 物理学报, 2014, 63(6): 060206. doi: 10.7498/aps.63.060206
    [10] 蒋涛, 任金莲, 徐磊, 陆林广. 非等温非牛顿黏性流体流动问题的修正光滑粒子动力学方法模拟. 物理学报, 2014, 63(21): 210203. doi: 10.7498/aps.63.210203
    [11] 吕君, 赵正予, 周晨. 次声波在非均匀运动大气中非线性传播特性的研究. 物理学报, 2011, 60(10): 104301. doi: 10.7498/aps.60.104301
    [12] 崔志文, 刘金霞, 王春霞, 王克协. 基于Biot-喷射流统一模型Maxwell流体饱和孔隙介质中的弹性波. 物理学报, 2010, 59(12): 8655-8661. doi: 10.7498/aps.59.8655
    [13] 王巧占, 于润升, 秦秀波, 李玉晓, 王宝义, 贾全杰. 介孔SiO2薄膜孔结构的慢正电子技术表征. 物理学报, 2009, 58(12): 8478-8483. doi: 10.7498/aps.58.8478
    [14] 杨 锐, 谢拥军, 王元源, 傅焕展. 加载异向介质非辐射介质波导中的慢波传输及应用. 物理学报, 2008, 57(9): 5513-5518. doi: 10.7498/aps.57.5513
    [15] 刘延柱. 黏性介质中圆截面弹性细杆的平面振动. 物理学报, 2005, 54(11): 4989-4993. doi: 10.7498/aps.54.4989
    [16] 崔志文, 王克协, 曹正良, 胡恒山. 多孔介质BISQ模型中的慢纵波. 物理学报, 2004, 53(9): 3083-3089. doi: 10.7498/aps.53.3083
    [17] 周宇峰, 王耀俊, 马力, 高天赋. 流体饱和多孔圆柱体的声波散射. 物理学报, 2000, 49(3): 480-486. doi: 10.7498/aps.49.480
    [18] 杨维纮, 胡希伟. 非均匀载流柱形等离子体中的磁流体力学波. 物理学报, 1996, 45(4): 595-600. doi: 10.7498/aps.45.595
    [19] 汪汉廷, 熊诗杰. 层状横波光学声子的非简谐性对高温超导电性的影响. 物理学报, 1992, 41(3): 506-510. doi: 10.7498/aps.41.506
    [20] 戴文龙, 贺贤土, 霍裕平, 刘之景. 等离子体中Langmuir波、横波和离子声波相互作用过程的孤立子行为. 物理学报, 1987, 36(1): 67-73. doi: 10.7498/aps.36.67
计量
  • 文章访问数:  2901
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-25
  • 修回日期:  2022-11-02
  • 上网日期:  2023-01-07
  • 刊出日期:  2023-03-05

/

返回文章
返回