搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无限流体中孔隙介质圆柱周向导波的传播特性

苏娜娜 韩庆邦 蒋謇

引用本文:
Citation:

无限流体中孔隙介质圆柱周向导波的传播特性

苏娜娜, 韩庆邦, 蒋謇

Guided circumferential wave propagation characteristics for porous cylinder immersed in infinite fluid

Su Na-Na, Han Qing-Bang, Jiang Jian
PDF
HTML
导出引用
  • 为研究无限大流体约束的孔隙圆柱中周向导波的传播规律, 分析孔隙参数对导波传播特性的影响, 建立了无限流体中孔隙介质圆柱的理论模型, 利用孔隙介质弹性波动理论, 建立了周向导波频散方程, 通过数值模拟计算得到无限流体中孔隙介质圆柱的频散曲线, 探讨了圆柱半径和孔隙参数对导波传播特性的影响, 并对导波的衰减特性进行了分析; 通过数值计算, 得到了周向导波的时域波形, 讨论了孔隙参数对波形的影响. 结果表明, 孔隙介质圆柱半径的改变影响圆柱尺度, 孔隙度的改变影响孔隙介质中体声波的波速, 都对周向导波频散曲线产生一定的影响, 所得到的频散曲线特征及衰减曲线与时域波形吻合. 研究结果对开展无限流体中孔隙介质圆柱的超声无损评价提供了一定的理论参考.
    Underground water, gas and oil all exist in the fractured or porous strata. Waves that propagate through porous cylinder immersed in infinite fluid are of considerable interest in the estimation of porous parameter, such as an underwater concrete column may present pore characteristics after a long time water immersion. Compared with longitudinal guided wave, circumferential guided wave has its advantages in the ultrasonic nondestructive inspection of porous cylinder. In order to investigate the propagation characteristics of guided waves in a porous cylinder immersed in infinite fluid and analyze the effects of the porous medium parameters on the dispersion characteristic, a model of porous cylinder surrounded by fluid is built. Based on the elastic-dynamic theory and modified liquid-saturated porous theory, the characteristic equation of guided wave is established, and the dispersion curves are obtained numerically. The effects of cylindrical radius and pore parameters on the propagation characteristics of guided waves are discussed; the attenuation characteristics of guided waves are also analyzed; the time domain waveforms of the guided circumferential waves are obtained by numerical inversion, and the influence of porous parameters on waveforms is simulated. It is found that the dispersion curves are similar to that of elastic cylinder in the fluid, there exist multiple mode guided waves and approximate shear velocity of medium for higher modes, and higher order modes are more affected by the radius, but it does not change the tendency of curve. The phase velocity decreases with porosity increasing at the same frequency and the effect of porosity on higher order modes is greater than that on mode 1; due to the dissipation in the medium, the attenuation increases porosity increasing. It can be seen from the transient responses that the wave packets move backward and the displacement amplitude decreases with the porosity increasing. The characteristics of the inversed transient response are in good agreement with theoretical dispersion and attenuation. The results show that the propagation of guided circumferential wave is affected by the pore parameters, especially for porosity, which can provide a theoretical reference for the non-destructive evaluation of the porous cylinder surrounded by infinite fluid.
      通信作者: 韩庆邦, hqb0092@163.com
    • 基金项目: 国家自然科学基金(批准号: 11574072, 11274091)和江苏省重点研发项目(批准号: BE2016056, BE2017013)资助的课题.
      Corresponding author: Han Qing-Bang, hqb0092@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574072, 11274091) and the Key Research and Development Project of Jiangsu Province, China (Grant Nos. BE2016056, BE2017013).
    [1]

    韩庆邦, 徐杉, 谢祖峰, 葛蕤, 王茜, 赵胜永, 朱昌平 2013 物理学报 62 194301Google Scholar

    Han Q B, Xu B, Xie Z F, Ge R, Wang X, Zhao S Y, Zhu C P 2013 Acta Phys. Sin. 62 194301Google Scholar

    [2]

    Edelman I, Wilmanski K 2002 Continuum Mech. Thermodyan. 14 25Google Scholar

    [3]

    Yan S G, Xie F L, Li C Z, Zhang B X 2016 Appl. Geophys. 13 333Google Scholar

    [4]

    Ding H R, Liu J X, Cui Z W 2017 Chin. Phys. B 26 124301Google Scholar

    [5]

    Han Q B, Qi L H, Shan M L, Yin, C, Zhu C P 2017 Ultrasonics 81 73Google Scholar

    [6]

    董庆德, 王克协, 许吉庆 1985 地球物理学报 28 208Google Scholar

    Dong Q D, Wang K X, Xu J Q 1985 Chin. J. Geophys. 28 208Google Scholar

    [7]

    Zhang S G, Hu W X 2008 Chin. Phys. Lett. 25 4314Google Scholar

    [8]

    郭文杰, 李天匀, 朱翔, 屈凯旸 2018 物理学报 67 084302Google Scholar

    Guo W J, Li T Y, Zhu X, Qu K S 2018 Acta Phys. Sin. 67 084302Google Scholar

    [9]

    Valle C, Qu J, Jacobs L J 1999 Int. J. Eng. Sci. 37 1369Google Scholar

    [10]

    Yang W, Fung T C, Chian K S, Chong C K 2007 J. Biomech. 40 481Google Scholar

    [11]

    高广健, 邓明晰, 李明亮, 刘畅 2015 物理学报 64 224301Google Scholar

    Gao G J, Deng M X, Li M L, Liu C 2015 Acta Phys. Sin. 64 224301Google Scholar

    [12]

    许洲琛, 韩庆邦, 童紫薇, 齐立华, 王鹏, 单鸣雷, 朱昌平 2018 声学学报 43 52

    Xu Z C, Han Q B, Tong Z W, Qi L H, Wang P, Shan M L, Zhu C P 2018 Acta Acust. 43 52

    [13]

    Biot M A 1956 J. Acoust. Soc. Am. 28 167

    [14]

    Ogushwitz P R 1985 J. Acoust. Soc. Am. 77 441Google Scholar

    [15]

    Johnson D L 1987 J. Fluid Mech. 176 379Google Scholar

    [16]

    Zheng P, Ding B Y, Zhao S X 2014 Acta Mech. Sin. 30 206Google Scholar

    [17]

    Biot M A 1957 J. Appl. Mech. 15 594

    [18]

    Butt H S U, Xue P, Jiang T Z, Wang B 2015 Int. J. Mech. Sci. 91 46Google Scholar

    [19]

    Biot M A 1962 J. Appl. Phys. 33 1482Google Scholar

    [20]

    邵广周, 李庆春, 梁志强 2007 地球物理学报 50 915Google Scholar

    Shao G Z, Li Q C, Liang Z Q 2007 Chin. J. Geophys. 50 915Google Scholar

    [21]

    Feng S, Johnson D L 1983 J. Acoust. Soc. Am. 74 906Google Scholar

    [22]

    Deresiewicz H, Skalak R 1963 Bull. Seismol. Soc. Am. 53 783

    [23]

    崔寒茵, 师芳芳, 籍顺心, 张碧星 2010 声学学报 35 446

    Cui H Y, Shi F F, Ji S X, Zhang B X 2010 Acta Acust. 35 446

    [24]

    王婷, 崔志文, 刘金霞, 王克协 2018 物理学报 67 114301Google Scholar

    Wang T, Cui Z W, Liu J X, Wang K X 2018 Acta Phys. Sin. 67 114301Google Scholar

  • 图 1  无限流体中孔隙介质圆柱的示意图

    Fig. 1.  Schematic of porous medium cylinder in an infinite fluid.

    图 2  无限流体中孔隙介质圆柱周向导波的相速度频散曲线

    Fig. 2.  The dispersion curves of porous cylinder in infinite fluid.

    图 3  无限流体中孔隙介质圆柱周向导波群速度频散曲线的前6阶模态

    Fig. 3.  The first sixth order mode of dispersion curves of porous cylinder in infinite fluid.

    图 4  无限流体中弹性圆柱和孔隙介质圆柱周向导波的频散曲线对比

    Fig. 4.  The dispersion curves of circumferential guide waves between an elastic cylinder and a porous cylinder in infinite fluid.

    图 5  不同圆柱半径下的导波频散曲线对比

    Fig. 5.  Dispersion curves for different cylinder radius.

    图 6  不同孔隙度下的导波频散曲线对比

    Fig. 6.  Dispersion curves versus porosity.

    图 7  不同孔隙度时周向导波的衰减曲线对比

    Fig. 7.  Attenuation curves of circumferential waves with different porosity.

    图 8  无限流体中孔隙介质圆柱的激发与检测点示意图

    Fig. 8.  Schematic of excitation and detection points of porous medium cylinder in an infinite fluid.

    图 9  孔隙度为0.1时, 不同检测点处的径向位移时域波形的对比 (a)检测点在$\theta = {\text{π}}/2$位置; (b)检测点在$\theta = {\text{π}}$位置

    Fig. 9.  Time-domain waveform of radial displacement at different detection points when the porosity is 0.1: (a) Detection point at $\theta = {\text{π}}/2$; (b) detection point at $\theta = {\text{π}}$.

    图 10  孔隙度为0.1,0.2,0.3时, 检测点在$\theta = {\text{π}}$位置处径向位移时域波形的对比

    Fig. 10.  Time-domain waveform of radial displacement of detection point at $\theta = {\text{π}}$ when the porosity is 0.1, 0.2, 0.3.

    表 1  模型材料参数表

    Table 1.  Material parameters.

    介质纵波波速/m·s–1横波波速/m·s–1密度/kg·m–3
    弹性圆柱537031002700
    孔隙介质固体基质537031002700
    孔隙流体1483998
    外部流体1483998
    下载: 导出CSV

    表 2  孔隙介质圆柱参数表

    Table 2.  Material parameters of porous medium.

    孔隙度β/%孔隙弯曲度a静态渗透率κ0/m2黏滞系数n/kg·s–1·m–1
    105.510–120.001
    固体颗粒体积模量Ks/GPa流体体积模量Kf/GPa固体骨架体积模量Kb/GPa固体骨架剪切模量N/GPa
    43.332.1933.7020.86
    下载: 导出CSV

    表 3  不同孔隙度时孔隙介质圆柱中体声波的波速

    Table 3.  Velocity of body sound waves in porous media with different porosity.

    孔隙度快纵波波速/km·s–1慢纵波波速/km·s–1横波波速/km·s–1
    0.14.96900.36942.8712
    0.24.48110.67482.5794
    0.33.86620.85792.2006
    下载: 导出CSV
  • [1]

    韩庆邦, 徐杉, 谢祖峰, 葛蕤, 王茜, 赵胜永, 朱昌平 2013 物理学报 62 194301Google Scholar

    Han Q B, Xu B, Xie Z F, Ge R, Wang X, Zhao S Y, Zhu C P 2013 Acta Phys. Sin. 62 194301Google Scholar

    [2]

    Edelman I, Wilmanski K 2002 Continuum Mech. Thermodyan. 14 25Google Scholar

    [3]

    Yan S G, Xie F L, Li C Z, Zhang B X 2016 Appl. Geophys. 13 333Google Scholar

    [4]

    Ding H R, Liu J X, Cui Z W 2017 Chin. Phys. B 26 124301Google Scholar

    [5]

    Han Q B, Qi L H, Shan M L, Yin, C, Zhu C P 2017 Ultrasonics 81 73Google Scholar

    [6]

    董庆德, 王克协, 许吉庆 1985 地球物理学报 28 208Google Scholar

    Dong Q D, Wang K X, Xu J Q 1985 Chin. J. Geophys. 28 208Google Scholar

    [7]

    Zhang S G, Hu W X 2008 Chin. Phys. Lett. 25 4314Google Scholar

    [8]

    郭文杰, 李天匀, 朱翔, 屈凯旸 2018 物理学报 67 084302Google Scholar

    Guo W J, Li T Y, Zhu X, Qu K S 2018 Acta Phys. Sin. 67 084302Google Scholar

    [9]

    Valle C, Qu J, Jacobs L J 1999 Int. J. Eng. Sci. 37 1369Google Scholar

    [10]

    Yang W, Fung T C, Chian K S, Chong C K 2007 J. Biomech. 40 481Google Scholar

    [11]

    高广健, 邓明晰, 李明亮, 刘畅 2015 物理学报 64 224301Google Scholar

    Gao G J, Deng M X, Li M L, Liu C 2015 Acta Phys. Sin. 64 224301Google Scholar

    [12]

    许洲琛, 韩庆邦, 童紫薇, 齐立华, 王鹏, 单鸣雷, 朱昌平 2018 声学学报 43 52

    Xu Z C, Han Q B, Tong Z W, Qi L H, Wang P, Shan M L, Zhu C P 2018 Acta Acust. 43 52

    [13]

    Biot M A 1956 J. Acoust. Soc. Am. 28 167

    [14]

    Ogushwitz P R 1985 J. Acoust. Soc. Am. 77 441Google Scholar

    [15]

    Johnson D L 1987 J. Fluid Mech. 176 379Google Scholar

    [16]

    Zheng P, Ding B Y, Zhao S X 2014 Acta Mech. Sin. 30 206Google Scholar

    [17]

    Biot M A 1957 J. Appl. Mech. 15 594

    [18]

    Butt H S U, Xue P, Jiang T Z, Wang B 2015 Int. J. Mech. Sci. 91 46Google Scholar

    [19]

    Biot M A 1962 J. Appl. Phys. 33 1482Google Scholar

    [20]

    邵广周, 李庆春, 梁志强 2007 地球物理学报 50 915Google Scholar

    Shao G Z, Li Q C, Liang Z Q 2007 Chin. J. Geophys. 50 915Google Scholar

    [21]

    Feng S, Johnson D L 1983 J. Acoust. Soc. Am. 74 906Google Scholar

    [22]

    Deresiewicz H, Skalak R 1963 Bull. Seismol. Soc. Am. 53 783

    [23]

    崔寒茵, 师芳芳, 籍顺心, 张碧星 2010 声学学报 35 446

    Cui H Y, Shi F F, Ji S X, Zhang B X 2010 Acta Acust. 35 446

    [24]

    王婷, 崔志文, 刘金霞, 王克协 2018 物理学报 67 114301Google Scholar

    Wang T, Cui Z W, Liu J X, Wang K X 2018 Acta Phys. Sin. 67 114301Google Scholar

  • [1] 石志奇, 何晓, 刘琳, 陈德华. 基于有限差分的部分饱和双重孔隙介质弹性波模拟与分析. 物理学报, 2024, 73(10): 100201. doi: 10.7498/aps.73.20240227
    [2] 石志奇, 何晓, 刘琳, 陈德华, 王秀明. 毛细管压力作用下的非饱和双重孔隙介质中弹性波传播. 物理学报, 2023, 72(6): 069101. doi: 10.7498/aps.72.20222063
    [3] 刘琳, 张秀梅, 王秀明. 孔隙内填充单一固体的固-固孔隙介质中的声波传播. 物理学报, 2022, 71(9): 099101. doi: 10.7498/aps.71.20212012
    [4] 胡婧, 王欢, 季小玲. Kerr非线性介质中聚焦像散高斯光束的传输特性. 物理学报, 2021, 70(7): 074205. doi: 10.7498/aps.70.20201661
    [5] 王婷, 崔志文, 刘金霞, 王克协. 含少量气泡流体饱和孔隙介质中的弹性波. 物理学报, 2018, 67(11): 114301. doi: 10.7498/aps.67.20180209
    [6] 马琦, 胡文祥, 徐琰锋, 王浩. 流体-镀层基底界面波的传播特性. 物理学报, 2017, 66(8): 084302. doi: 10.7498/aps.66.084302
    [7] 李明亮, 邓明晰, 高广健. 复合圆管界面特性对周向超声导波二次谐波发生效应的影响分析. 物理学报, 2016, 65(19): 194301. doi: 10.7498/aps.65.194301
    [8] 高广健, 邓明晰, 李明亮, 刘畅. 管间界面特性对周向超声导波传播特性的影响. 物理学报, 2015, 64(22): 224301. doi: 10.7498/aps.64.224301
    [9] 高广健, 邓明晰, 李明亮. 圆管结构中周向导波非线性效应的模式展开分析. 物理学报, 2015, 64(18): 184303. doi: 10.7498/aps.64.184303
    [10] 宋永佳, 胡恒山. 含定向非均匀体固体材料的横观各向同性有效弹性模量. 物理学报, 2014, 63(1): 016202. doi: 10.7498/aps.63.016202
    [11] 孔丽云, 王一博, 杨慧珠. 裂缝诱导TTI双孔隙介质波场传播特征. 物理学报, 2013, 62(13): 139101. doi: 10.7498/aps.62.139101
    [12] 崔志文, 刘金霞, 王春霞, 王克协. 基于Biot-喷射流统一模型Maxwell流体饱和孔隙介质中的弹性波. 物理学报, 2010, 59(12): 8655-8661. doi: 10.7498/aps.59.8655
    [13] 张新明, 刘家琦, 刘克安. 一维双相介质孔隙率的小波多尺度反演. 物理学报, 2008, 57(2): 654-660. doi: 10.7498/aps.57.654
    [14] 李富才, 孟 光. 窄频带Lamb波频散特性研究. 物理学报, 2008, 57(7): 4265-4272. doi: 10.7498/aps.57.4265
    [15] 冯增朝, 赵阳升, 吕兆兴. 二维孔隙裂隙双重介质逾渗规律研究. 物理学报, 2007, 56(5): 2796-2801. doi: 10.7498/aps.56.2796
    [16] 肖 夏, 尤学一, 姚素英. 表征超大规模集成电路互连纳米薄膜硬度特性的声表面波的频散特性. 物理学报, 2007, 56(4): 2428-2433. doi: 10.7498/aps.56.2428
    [17] 赵 艳, 沈中华, 陆 建, 倪晓武. 激光在管道中激发周向导波的有限元模拟. 物理学报, 2007, 56(1): 321-326. doi: 10.7498/aps.56.321
    [18] 关 威, 胡恒山, 储昭坦. 声诱导电磁场的赫兹矢量表示与多极声电测井模拟. 物理学报, 2006, 55(1): 267-274. doi: 10.7498/aps.55.267
    [19] 胡恒山. 孔隙地层井壁上的声波首波及其诱导电磁场的原因. 物理学报, 2003, 52(8): 1954-1959. doi: 10.7498/aps.52.1954
    [20] 杜启振, 杨慧珠. 线性黏弹性各向异性介质速度频散和衰减特征研究. 物理学报, 2002, 51(9): 2101-2108. doi: 10.7498/aps.51.2101
计量
  • 文章访问数:  7876
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-29
  • 修回日期:  2019-01-29
  • 上网日期:  2019-04-01
  • 刊出日期:  2019-04-20

/

返回文章
返回