搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

管间界面特性对周向超声导波传播特性的影响

高广健 邓明晰 李明亮 刘畅

引用本文:
Citation:

管间界面特性对周向超声导波传播特性的影响

高广健, 邓明晰, 李明亮, 刘畅

Influence of the interfacial properties on guided circumferential wave propagation in the circular tube structure

Gao Guang-Jian, Deng Ming-Xi, Li Ming-Liang, Liu Chang
PDF
导出引用
  • 采用界面弹簧模型对圆管结构的管间界面特性进行描述, 推导出含弱界面的圆管结构中声波沿周向传播时的位移场及应力场的数学表达式. 在此基础上采用导波的模式展开分析方法, 给出了与管间界面特性及激励源密切相关的周向超声导波模式展开系数的解析表达式. 数值分析了管间界面特性的变化对周向超声导波的频散和声场产生的影响. 理论与数值分析结果表明, 通过选择适当的驱动频率及周向导波模式, 可使周向超声导波的相速度及圆管外表面的位移场随管间界面特性的变化表现出非常敏感且单调的性质. 这一结果有助于采用周向超声导波方法准确定征圆管结构的管间界面特性.
    The mathematical expressions both of displacement and stress fields of circumferential wave propagation in circular tube structure with a weak interface are derived on condition that the interfacial properties between the two circular tubes are characterized by the interfacial spring model. Based on the said displacement and stress expressions derived, the dispersion equation of ultrasonic guided circumferential wave (UGCW) modes is formally presented by using the corresponding mechanical boundary conditions. According to the technique of modal expansion analysis for waveguide excitation, for a given excitation source used to generate circumferential wave in circular tube structure, the corresponding field of circumferential wave propagation can be decomposed into a series of UGCW modes. Using the reciprocity relations and mode orthogonality, the analytical expression of UGCW mode expansion coefficient is derived, which is closely related to the given excitation source for UGCW generation and the interfacial properties between the two tubes. The influences of change in the interfacial property on dispersion and acoustic field of the UGCW propagation are numerically analyzed. In the cases of perfect and sliding interfaces, for a given UGCW mode, the relative change rate of phase velocity is defined, and then its curve versus frequency is calculated, through which the specific frequency can be determined where the UGCW phase velocity appears to be most sensitive to the change in the interfacial property. For a given UGCW mode and driving frequency, it is numerically found that the displacement field on the outside surface of the circular tube structure changes sensitively and monotonically with change in interfacial property between the tubes. Clearly, through choosing the appropriate driving frequency and the mode of UGCW propagation, both the UGCW phase velocity and the displacement field on the outside surface of the circular tube structure will be monotonic and sensitive to change in interfacial property. It is expected that the results obtained in this paper will be of significance for accurately characterizing the interfacial properties of composite circular tube structures by using the UGCW technique.
      通信作者: 邓明晰, dengmx65@yahoo.com
    • 基金项目: 国家自然科学基金(批准号: 11474361, 11274388)资助的课题.
      Corresponding author: Deng Ming-Xi, dengmx65@yahoo.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474361, 11274388).
    [1]

    Packer J A, Henderson J E (translated by Cao J J) 1997 Hollow Structural Section Connections and Trusses: A Design Guide (Beijing: Science Press) pp1-4 (in Chinese) [帕克J A, 亨德森J E 著 (曹俊杰 译) 1997 空心管结构连接设计指南 (北京: 科学出版社) 第14页]

    [2]

    Peng F, Hu S Y 2009 Chin. J. Appl. Mech. 26 55 (in Chinese) [彭飞, 胡时岳 2009 应用力学学报 26 55]

    [3]

    Du G S, Wang Y J, Yuan Y F, Zhao Q C 1998 Acta Phys. Sin. 47 27 (in Chinese) [杜光升, 王耀俊, 袁忆丰, 赵庆昌 1998 物理学报 47 27]

    [4]

    Deng M X 2005 Acta Acust. 30 542 (in Chinese) [邓明晰 2005 声学学报 30 542]

    [5]

    Wu C P, Syu Y S, Lo J Y 2007 Int. J. Mech. Sci. 49 669

    [6]

    Valle C, Qu J M, Jacobs L J 1999 Int. J. Eng. Sci. 37 1369

    [7]

    Zhang H L, Yin X C 2010 J. Ship Mech. 14 930 (in Chinese) [张慧玲, 尹晓春 2010 船舶力学 14 930]

    [8]

    He C F, Li L T, Wu B 2004 Chin. J. Mech. Eng. 40 7 (in Chinese) [何存富, 李隆涛, 吴斌 2004 机械工程学报 40 7]

    [9]

    Huang P P, Yao Y W, Wu F G, Zhang X, Li J, Hu A Z 2015 Chin. Phys. B 24 054301

    [10]

    Yang W, Fung T C, Chian K S 2007 J. Biomech. 40 481

    [11]

    Zhang R, Wan M X 2000 Acta Phys. Sin. 49 1297 (in Chinese) [张锐, 万明习 2000 物理学报 49 1297]

    [12]

    Liu G, Qu J M 1998 ASME J. Appl. Mech. 65 424

    [13]

    Liu Y, Li Z, Gong K Z 2012 Mech. Syst. Signal Process. 30 157

    [14]

    Lu P, Wang Y J 2001 Acta Phys. Sin. 50 697 (in Chinese) [陆鹏, 王耀俊 2001 物理学报 50 697]

    [15]

    Wang Y J 2004 Acta Acust. 29 97 (in Chinese) [王耀俊 2004 声学学报 29 97]

    [16]

    Auld B A 1973 Acoustics Fields and Wave in Solids (Vol. 2) (New York: John Willey Sons, Inc.) pp151-162

    [17]

    Deng M X, Xiang Y X 2010 Chin. Phys. B 19 114302

    [18]

    Deng M X 2006 Nonlinear Lamb Waves Propagate in the Solid Plates (Beijing: Science Press) pp12-40 (in Chinese) [邓明晰 2006 固体板中的非线性兰姆波 (北京: 科学出版社) 第1240页]

    [19]

    Walsley R J 1973 Stress Wave Propagation in Solids (New York: Marcel Dekker, Inc.) pp128-159

    [20]

    Rose J L 1999 Ultrasonic Waves in Solid Media (Cambridge: Cambridge University Press) pp35-41

  • [1]

    Packer J A, Henderson J E (translated by Cao J J) 1997 Hollow Structural Section Connections and Trusses: A Design Guide (Beijing: Science Press) pp1-4 (in Chinese) [帕克J A, 亨德森J E 著 (曹俊杰 译) 1997 空心管结构连接设计指南 (北京: 科学出版社) 第14页]

    [2]

    Peng F, Hu S Y 2009 Chin. J. Appl. Mech. 26 55 (in Chinese) [彭飞, 胡时岳 2009 应用力学学报 26 55]

    [3]

    Du G S, Wang Y J, Yuan Y F, Zhao Q C 1998 Acta Phys. Sin. 47 27 (in Chinese) [杜光升, 王耀俊, 袁忆丰, 赵庆昌 1998 物理学报 47 27]

    [4]

    Deng M X 2005 Acta Acust. 30 542 (in Chinese) [邓明晰 2005 声学学报 30 542]

    [5]

    Wu C P, Syu Y S, Lo J Y 2007 Int. J. Mech. Sci. 49 669

    [6]

    Valle C, Qu J M, Jacobs L J 1999 Int. J. Eng. Sci. 37 1369

    [7]

    Zhang H L, Yin X C 2010 J. Ship Mech. 14 930 (in Chinese) [张慧玲, 尹晓春 2010 船舶力学 14 930]

    [8]

    He C F, Li L T, Wu B 2004 Chin. J. Mech. Eng. 40 7 (in Chinese) [何存富, 李隆涛, 吴斌 2004 机械工程学报 40 7]

    [9]

    Huang P P, Yao Y W, Wu F G, Zhang X, Li J, Hu A Z 2015 Chin. Phys. B 24 054301

    [10]

    Yang W, Fung T C, Chian K S 2007 J. Biomech. 40 481

    [11]

    Zhang R, Wan M X 2000 Acta Phys. Sin. 49 1297 (in Chinese) [张锐, 万明习 2000 物理学报 49 1297]

    [12]

    Liu G, Qu J M 1998 ASME J. Appl. Mech. 65 424

    [13]

    Liu Y, Li Z, Gong K Z 2012 Mech. Syst. Signal Process. 30 157

    [14]

    Lu P, Wang Y J 2001 Acta Phys. Sin. 50 697 (in Chinese) [陆鹏, 王耀俊 2001 物理学报 50 697]

    [15]

    Wang Y J 2004 Acta Acust. 29 97 (in Chinese) [王耀俊 2004 声学学报 29 97]

    [16]

    Auld B A 1973 Acoustics Fields and Wave in Solids (Vol. 2) (New York: John Willey Sons, Inc.) pp151-162

    [17]

    Deng M X, Xiang Y X 2010 Chin. Phys. B 19 114302

    [18]

    Deng M X 2006 Nonlinear Lamb Waves Propagate in the Solid Plates (Beijing: Science Press) pp12-40 (in Chinese) [邓明晰 2006 固体板中的非线性兰姆波 (北京: 科学出版社) 第1240页]

    [19]

    Walsley R J 1973 Stress Wave Propagation in Solids (New York: Marcel Dekker, Inc.) pp128-159

    [20]

    Rose J L 1999 Ultrasonic Waves in Solid Media (Cambridge: Cambridge University Press) pp35-41

  • [1] 郝望, 段睿, 杨坤德. 联合简正波水波和底波频散特性的贝叶斯地声参数反演. 物理学报, 2023, 72(5): 054303. doi: 10.7498/aps.72.20221717
    [2] 苏娜娜, 韩庆邦, 蒋謇. 无限流体中孔隙介质圆柱周向导波的传播特性. 物理学报, 2019, 68(8): 084301. doi: 10.7498/aps.68.20182300
    [3] 东蕊, 刘成成, 蔡勋兵, 邵留磊, 李博艺, 他得安. 超声背散射骨质评价中的频散衰减测量与补偿. 物理学报, 2019, 68(18): 184301. doi: 10.7498/aps.68.20190599
    [4] 倪龙, 陈晓. 基于频散补偿和分数阶微分的多模式兰姆波分离. 物理学报, 2018, 67(20): 204301. doi: 10.7498/aps.67.20180561
    [5] 刘珍黎, 宋亮华, 白亮, 许凯亮, 他得安. 长骨中振动声激发超声导波的方法. 物理学报, 2017, 66(15): 154303. doi: 10.7498/aps.66.154303
    [6] 李明亮, 邓明晰, 高广健. 复合圆管界面特性对周向超声导波二次谐波发生效应的影响分析. 物理学报, 2016, 65(19): 194301. doi: 10.7498/aps.65.194301
    [7] 高广健, 邓明晰, 李明亮. 圆管结构中周向导波非线性效应的模式展开分析. 物理学报, 2015, 64(18): 184303. doi: 10.7498/aps.64.184303
    [8] 郑伟花, 贾虎. 水下高斯界面背向散射超声散斑场的相位奇异. 物理学报, 2014, 63(5): 054301. doi: 10.7498/aps.63.054301
    [9] 李焜, 方世良, 安良. 基于频散特征的单水听器模式特征提取及距离深度估计研究. 物理学报, 2013, 62(9): 094303. doi: 10.7498/aps.62.094303
    [10] 张忠强, 丁建宁, 刘珍, Y. Xue, 程广贵, 凌智勇. 碳纳米管-聚乙烯复合材料界面力学特性分析. 物理学报, 2012, 61(12): 126202. doi: 10.7498/aps.61.126202
    [11] 张正罡, 他得安. 基于弹性模量检测骨疲劳的超声导波方法研究. 物理学报, 2012, 61(13): 134304. doi: 10.7498/aps.61.134304
    [12] 李富才, 孟 光. 窄频带Lamb波频散特性研究. 物理学报, 2008, 57(7): 4265-4272. doi: 10.7498/aps.57.4265
    [13] 肖 夏, 尤学一, 姚素英. 表征超大规模集成电路互连纳米薄膜硬度特性的声表面波的频散特性. 物理学报, 2007, 56(4): 2428-2433. doi: 10.7498/aps.56.2428
    [14] 朱鸿茂, 郑伟花, 黄忠文, 朱 成. 运动界面上反射超声散斑空间运动的研究. 物理学报, 2004, 53(8): 2614-2620. doi: 10.7498/aps.53.2614
    [15] 李曙光, 刘晓东, 侯蓝田. 光子晶体光纤的导波模式与色散特性. 物理学报, 2003, 52(11): 2811-2817. doi: 10.7498/aps.52.2811
    [16] 朱鸿茂, 吴艳阳, 黄忠文, 王寅观, 朱 成. 一类弱散射界面背向散射超声散斑一阶统计特性. 物理学报, 2003, 52(6): 1438-1443. doi: 10.7498/aps.52.1438
    [17] 余寿绵, 余恬. 光纤中的电磁对偶变换与导波的模式分析. 物理学报, 2001, 50(11): 2179-2184. doi: 10.7498/aps.50.2179
    [18] 张 锐, 万明习, CAO WEN-WU. 超薄层状复合媒质弱界面深度与声导波. 物理学报, 2000, 49(7): 1297-1302. doi: 10.7498/aps.49.1297
    [19] 刘公强, C.S.TSAI. 斜向静磁场中光导波模式转换与衍射理论. 物理学报, 1998, 47(7): 1213-1221. doi: 10.7498/aps.47.1213
    [20] 杜光升, 王耀俊, 袁忆丰, 赵庆昌. 具有弱界面的柱状复合结构中轴对称声导波. 物理学报, 1998, 47(1): 27-34. doi: 10.7498/aps.47.27
计量
  • 文章访问数:  6163
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-09
  • 修回日期:  2015-08-25
  • 刊出日期:  2015-11-05

/

返回文章
返回