搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非等温非牛顿黏性流体流动问题的修正光滑粒子动力学方法模拟

蒋涛 任金莲 徐磊 陆林广

引用本文:
Citation:

非等温非牛顿黏性流体流动问题的修正光滑粒子动力学方法模拟

蒋涛, 任金莲, 徐磊, 陆林广

A corrected smoothed particle hydrodynamics approach to solve the non-isothermal non-Newtonian viscous fluid flow problems

Jiang Tao, Ren Jin-Lian, Xu Lei, Lu Lin-Guang
PDF
导出引用
  • 为准确、有效地模拟非等温非牛顿黏性流体的流动问题,本文基于一种不含核导数计算的核梯度修正格式和不可压缩条件给出了一种改进光滑粒子动力学(SPH)离散格式,它较传统SPH离散格式具有较高精度和较好稳定性. 同时,为准确地描述温度场的演化过程,建立了非牛顿黏性的SPH温度离散模型. 通过对等温Poiseuille流、喷射流和非等温Couette流、4:1收缩流进行模拟,并与其他数值结果作对比,分别验证了改进SPH方法模拟非牛顿黏性流动问题的可靠性和提出的SPH温度离散模型求解非等温流动问题的有效性和准确性. 随后,运用改进SPH方法结合SPH温度离散模型对环形腔和C形腔内非等温非牛顿黏性流体的充模过程进行了试探性模拟研究,分析了数值模拟的收敛性,讨论了不同位置处热流参数对温度和流动的影响.
    In this paper, a corrected smoothed particle hydrodynamics (SPH) method is proposed to solve the problems of non-isothermal non-Newtonian viscous fluid. The proposed particle method is based on the corrected kernel derivative scheme under no kernel derivative and incompressible conditions, which possesses higher accuracy and better stability than the traditional SPH method. Meanwhile, a temperature-discretization scheme is deduced by the concept of SPH method for the purpose of precisely describing the evolutionary process of the temperature field. Reliability of the corrected SPH method for simulating the non-Newtonian viscous fluid flow is demonstrated by simulating the isothermal Poiseuille flow and the jet fluid of filling process; and the validity and accuracy of the proposed SPH discrete scheme in a temperature model for solving the non-isothermal fluid flow are tested by solving the non-isothermal Couette flow and 4:1 contraction flow. Subsequently, the proposed corrected SPH method combined with the SPH temperature-discretization scheme is tentatively extended to include the simulation of the non-isothermal non-Newtonian viscous free-surface flows in the ring-shaped and C-shaped cavities. Especially, the convergence of numerical simulations is analyzed, and the influences of heat flow parameters on the temperature and fluid flow at different positions are discussed.
    • 基金项目: 中国博士后科学基金(批准号:2014M550310)、国家自然科学基金青年科学基金(批准号:51309200)、江苏省自然科学青年基金(批准号:BK20130436)和扬州大学创新培育基金(批准号:2013CXJ003)资助的课题.
    • Funds: Project supported by the Postdoctoral Science Foundation of China (Grant No. 2014M550310), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51309200), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20130436), and the Innovation Cultivation Funds of Yangzhou University, China (Grant No. 2013CXJ003).
    [1]

    Hieber C A, Shen S F 1980 Journal of Non-Newtonian Fluid Mechanics 7 1

    [2]

    Tao W Q 2006 Heat Transfer (Fourth Edition) (Beijing: Higher Education Press) (in Chinese) [陶文铨2006传热学 (第四版)(北京: 高等教育出版社)]

    [3]

    Han X H, Li X K 2007 International Journal of Heat Mass Transfer 50 847

    [4]

    Yang B X, Ouyang J 2012 Acta Phys. Sin. 61 234602 (in Chinese) [杨斌鑫, 欧阳洁 2012 物理学报 61 234602]

    [5]

    Lewis R W, Nithiarasu P, Seetharamu K N 2004 Fundamentals of the Finite Element Method for Heat and Fluid Flow (Chichester: John Wiley)

    [6]

    Pan Y, Suga K 2005 Phys. Fluids 17 082105

    [7]

    Jiang X, James A J 2007 J. Engineer. Math. 59 99

    [8]

    Tomé M F, Grossia L, Casteloa A, Cuminatoa J A, Mangiavacchia N, Ferreiraa V G, de Sousaa F S, McKeeb S 2004 Journal of Non-Newtonian Fluid Mechanics 123 85

    [9]

    Zhong C W, Xie J F, Zhuo C S, Xiong S W, Yin D C 2009 Chin. Phys. B 18 4083

    [10]

    Cheng R J, Cheng Y M, Ge H X 2009 Chin. Phys. B 18 4059

    [11]

    Chen R J, Ge H X 2010 Chin. Phys. B 19 090201

    [12]

    Liu G R, Liu M B 2003 Smoothed Particle Hydrodynamics: A Mesh-free Particle Method (Singapore: World Scientific)

    [13]

    Liu M B, Liu G R 2010 Archives of Computational Methods in Engineering 17 25

    [14]

    Zhou G Z, Ge W, Li J H 2010 Chemical Engineering Science 65 2258

    [15]

    Su T X, Ma L Q, Liu M B, Chang J Z 2013 Acta Phys. Sin. 62 064702 (in Chinese) [苏铁熊, 马理强, 刘谋斌, 常建忠 2013 物理学报 62 064702]

    [16]

    Han X H 2007 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese) [韩先洪2007博士学位论文(大连: 大连理工大学)]

    [17]

    Jiang F, Oliveira M S A, Sousa A C M 2005 M. T-wias. U. Werkstofftech 10 613

    [18]

    Cleary P W, Ha J, Prakash M, Nguyen T 2010 Applied Mathematical Modelling 34 2018

    [19]

    Jiang T, Ouyang J, Li X J, Zhang L, Ren J L 2011 Acta Phys. Sin. 60 090206 (in Chinese) [蒋涛, 欧阳洁, 栗雪娟, 张林, 任金莲 2011 物理学报 60 090206]

    [20]

    Chen J K, Beraun J E 2000 Comp. Meth. Appl. Mech. Eng. 190 225

    [21]

    Liu M B, Chang J Z 2010 Acta Phys. Sin. 59 3654 (in Chinese) [刘谋斌, 常建忠 2010 物理学报 59 3654]

    [22]

    Zhou G Z, Ge W, Li B, Li X, Wang P, Wang J, Li J H 2013 Microfluidics and Nanofluidics 15 481

    [23]

    Zhang M, Zhang S, Zhang H, Zheng L 2012 Computers & Fluids 59 61

    [24]

    Han Y W, Qiang H F, Zhao J L, Gao W R 2013 Acta Phys. Sin. 62 044702 (in Chinese) [韩亚伟, 强洪夫, 赵久玲, 高巍然 2013 物理学报 62 044702]

    [25]

    Jiang T, Lu L G, Lu W G 2013 Acta Phys. Sin. 62 224701 (in Chinese) [蒋涛, 陆林广, 陆伟刚 2013 物理学报 62 224701]

    [26]

    Fan X J, Tanner R, Zheng R 2010 Journal of Non-Newtonian Fluid Mechanics 165 219

    [27]

    Basa M, Quinlan N J, Lastiwka M 2009 Int. J. Num. Meth. Flu. 60 1127

    [28]

    Shao S, Lo E Y M 2003 Advances in Water Resources 26 787

    [29]

    Molteni D, Colagrossi A 2009 Computer Physics Communications 180 861

    [30]

    Rafiee A, Manzari M T, Hosseini M 2007 International Journal of Non-linear Mechanics 42 1210

  • [1]

    Hieber C A, Shen S F 1980 Journal of Non-Newtonian Fluid Mechanics 7 1

    [2]

    Tao W Q 2006 Heat Transfer (Fourth Edition) (Beijing: Higher Education Press) (in Chinese) [陶文铨2006传热学 (第四版)(北京: 高等教育出版社)]

    [3]

    Han X H, Li X K 2007 International Journal of Heat Mass Transfer 50 847

    [4]

    Yang B X, Ouyang J 2012 Acta Phys. Sin. 61 234602 (in Chinese) [杨斌鑫, 欧阳洁 2012 物理学报 61 234602]

    [5]

    Lewis R W, Nithiarasu P, Seetharamu K N 2004 Fundamentals of the Finite Element Method for Heat and Fluid Flow (Chichester: John Wiley)

    [6]

    Pan Y, Suga K 2005 Phys. Fluids 17 082105

    [7]

    Jiang X, James A J 2007 J. Engineer. Math. 59 99

    [8]

    Tomé M F, Grossia L, Casteloa A, Cuminatoa J A, Mangiavacchia N, Ferreiraa V G, de Sousaa F S, McKeeb S 2004 Journal of Non-Newtonian Fluid Mechanics 123 85

    [9]

    Zhong C W, Xie J F, Zhuo C S, Xiong S W, Yin D C 2009 Chin. Phys. B 18 4083

    [10]

    Cheng R J, Cheng Y M, Ge H X 2009 Chin. Phys. B 18 4059

    [11]

    Chen R J, Ge H X 2010 Chin. Phys. B 19 090201

    [12]

    Liu G R, Liu M B 2003 Smoothed Particle Hydrodynamics: A Mesh-free Particle Method (Singapore: World Scientific)

    [13]

    Liu M B, Liu G R 2010 Archives of Computational Methods in Engineering 17 25

    [14]

    Zhou G Z, Ge W, Li J H 2010 Chemical Engineering Science 65 2258

    [15]

    Su T X, Ma L Q, Liu M B, Chang J Z 2013 Acta Phys. Sin. 62 064702 (in Chinese) [苏铁熊, 马理强, 刘谋斌, 常建忠 2013 物理学报 62 064702]

    [16]

    Han X H 2007 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese) [韩先洪2007博士学位论文(大连: 大连理工大学)]

    [17]

    Jiang F, Oliveira M S A, Sousa A C M 2005 M. T-wias. U. Werkstofftech 10 613

    [18]

    Cleary P W, Ha J, Prakash M, Nguyen T 2010 Applied Mathematical Modelling 34 2018

    [19]

    Jiang T, Ouyang J, Li X J, Zhang L, Ren J L 2011 Acta Phys. Sin. 60 090206 (in Chinese) [蒋涛, 欧阳洁, 栗雪娟, 张林, 任金莲 2011 物理学报 60 090206]

    [20]

    Chen J K, Beraun J E 2000 Comp. Meth. Appl. Mech. Eng. 190 225

    [21]

    Liu M B, Chang J Z 2010 Acta Phys. Sin. 59 3654 (in Chinese) [刘谋斌, 常建忠 2010 物理学报 59 3654]

    [22]

    Zhou G Z, Ge W, Li B, Li X, Wang P, Wang J, Li J H 2013 Microfluidics and Nanofluidics 15 481

    [23]

    Zhang M, Zhang S, Zhang H, Zheng L 2012 Computers & Fluids 59 61

    [24]

    Han Y W, Qiang H F, Zhao J L, Gao W R 2013 Acta Phys. Sin. 62 044702 (in Chinese) [韩亚伟, 强洪夫, 赵久玲, 高巍然 2013 物理学报 62 044702]

    [25]

    Jiang T, Lu L G, Lu W G 2013 Acta Phys. Sin. 62 224701 (in Chinese) [蒋涛, 陆林广, 陆伟刚 2013 物理学报 62 224701]

    [26]

    Fan X J, Tanner R, Zheng R 2010 Journal of Non-Newtonian Fluid Mechanics 165 219

    [27]

    Basa M, Quinlan N J, Lastiwka M 2009 Int. J. Num. Meth. Flu. 60 1127

    [28]

    Shao S, Lo E Y M 2003 Advances in Water Resources 26 787

    [29]

    Molteni D, Colagrossi A 2009 Computer Physics Communications 180 861

    [30]

    Rafiee A, Manzari M T, Hosseini M 2007 International Journal of Non-linear Mechanics 42 1210

  • [1] 孙宗利, 康艳霜, 张君霞. 非均匀流体的体积黏度: Maxwell弛豫模型. 物理学报, 2024, 73(6): 066601. doi: 10.7498/aps.73.20231459
    [2] 许晓阳, 周亚丽, 余鹏. eXtended Pom-Pom黏弹性流体的改进光滑粒子动力学模拟. 物理学报, 2023, 72(3): 034701. doi: 10.7498/aps.72.20221922
    [3] 彭凡, 张秀梅, 刘琳, 王秀明. 非均匀饱含黏性流体孔隙介质中声波传播及井孔声场分析. 物理学报, 2023, 72(5): 050401. doi: 10.7498/aps.72.20221858
    [4] 邵绪强, 梅鹏, 陈文新. 基于稳定性SPH-SWE数值模型的真实感流体动画实时模拟. 物理学报, 2021, 70(23): 234701. doi: 10.7498/aps.70.20211251
    [5] 蒋涛, 黄金晶, 陆林广, 任金莲. 非线性薛定谔方程的高阶分裂改进光滑粒子动力学算法. 物理学报, 2019, 68(9): 090203. doi: 10.7498/aps.68.20190169
    [6] 蒋涛, 陈振超, 任金莲, 李刚. 基于修正并行光滑粒子动力学方法三维变系数瞬态热传导问题的模拟. 物理学报, 2017, 66(13): 130201. doi: 10.7498/aps.66.130201
    [7] 王鹏, 薛纭, 楼智美. 黏性流体中超细长弹性杆的动力学不稳定性. 物理学报, 2017, 66(9): 094501. doi: 10.7498/aps.66.094501
    [8] 马理强, 苏铁熊, 刘汉涛, 孟青. 微液滴振荡过程的光滑粒子动力学方法数值模拟. 物理学报, 2015, 64(13): 134702. doi: 10.7498/aps.64.134702
    [9] 刘虎, 强洪夫, 陈福振, 韩亚伟, 范树佳. 一种新型光滑粒子动力学固壁边界施加模型. 物理学报, 2015, 64(9): 094701. doi: 10.7498/aps.64.094701
    [10] 雷娟棉, 杨浩, 黄灿. 基于弱可压与不可压光滑粒子动力学方法的封闭方腔自然对流数值模拟及算法对比. 物理学报, 2014, 63(22): 224701. doi: 10.7498/aps.63.224701
    [11] 邱流潮. 基于不可压缩光滑粒子动力学的黏性液滴变形过程仿真. 物理学报, 2013, 62(12): 124702. doi: 10.7498/aps.62.124702
    [12] 韩亚伟, 强洪夫, 赵玖玲, 高巍然. 光滑粒子流体动力学方法固壁处理的一种新型排斥力模型. 物理学报, 2013, 62(4): 044702. doi: 10.7498/aps.62.044702
    [13] 蒋涛, 陆林广, 陆伟刚. 等直径微液滴碰撞过程的改进光滑粒子动力学模拟. 物理学报, 2013, 62(22): 224701. doi: 10.7498/aps.62.224701
    [14] 苏铁熊, 马理强, 刘谋斌, 常建忠. 基于光滑粒子动力学方法的液滴冲击固壁面问题数值模拟. 物理学报, 2013, 62(6): 064702. doi: 10.7498/aps.62.064702
    [15] 杨秀峰, 刘谋斌. 光滑粒子动力学SPH方法应力不稳定性的一种改进方案. 物理学报, 2012, 61(22): 224701. doi: 10.7498/aps.61.224701
    [16] 马理强, 刘谋斌, 常建忠, 苏铁熊, 刘汉涛. 液滴冲击液膜问题的光滑粒子动力学模拟. 物理学报, 2012, 61(24): 244701. doi: 10.7498/aps.61.244701
    [17] 马理强, 常建忠, 刘汉涛, 刘谋斌. 液滴溅落问题的光滑粒子动力学模拟. 物理学报, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [18] 蒋涛, 欧阳洁, 栗雪娟, 张林, 任金莲. 瞬态热传导问题的一阶对称SPH方法模拟. 物理学报, 2011, 60(9): 090206. doi: 10.7498/aps.60.090206
    [19] 蒋涛, 欧阳洁, 赵晓凯, 任金莲. 黏性液滴变形过程的核梯度修正光滑粒子动力学模拟. 物理学报, 2011, 60(5): 054701. doi: 10.7498/aps.60.054701
    [20] 刘谋斌, 常建忠. 光滑粒子动力学方法中粒子分布与数值稳定性分析. 物理学报, 2010, 59(6): 3654-3662. doi: 10.7498/aps.59.3654
计量
  • 文章访问数:  5284
  • PDF下载量:  754
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-07
  • 修回日期:  2014-06-11
  • 刊出日期:  2014-11-05

/

返回文章
返回