搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于浸入式边界方法的串联双矩形柱绕流数值模拟

杨青 曹曙阳 刘十一

引用本文:
Citation:

基于浸入式边界方法的串联双矩形柱绕流数值模拟

杨青, 曹曙阳, 刘十一

Numerical simulation of flow around two elongated rectangles in tandem arrangement using an immersed boundary method

Yang Qing, Cao Shu-Yang, Liu Shi-Yi
PDF
导出引用
  • 基于浸入式边界算法(Virtual Boundary Method)中力源反馈边界的思想,改进其原有内部流体处理方法以减少计算耗费,并结合非等间距网格以便工程应用计算,模拟雷诺数范围内(Re=200–103)串联双矩形柱绕流,研究表明:Re=200–300时,前柱尾流涡脱处于双剪切层控制阶段;柱间涡街为Karman类涡街,在小间距条件下被抑制,形成涡环;前柱对后柱屏蔽效应体现为后柱阻力系数远小于前柱;临界间距时柱间涡街充分发展,后柱阻力系数等气动参数亦在此发生跃升,但仍小于前柱值;随雷诺数升高,尾流涡街尺寸缩小,临界间距及跃升幅度变小. Re=400时,前柱尾流涡脱进入冲击剪切层控制阶段,阻力系数不再呈现规律性振荡;此后随雷诺数升高,冲击剪切层逐步完善,前柱流动分离使其表面产生更多附着涡,导致尾流旋涡尺寸进一步减小,屏蔽效应消失,涡脱更为剧烈,进而对后柱产生脉动冲击效应;适当间距比条件下此类脉动冲击效应使得后柱阻力系数发生跃升,并略高于前柱.
    Based on the immersed boundary concept that the border may be constructed by feedback force, a numerical simulation is carried out by modifying previous inner fluid treatment and incorporating it with non-equidistant grid. Flow around two elongated rectangles in tandem arrangement is computed in the range of Reynolds numbers from 200 to 103. Results indicate that when the Reynolds number is in the range 200–300, a vortex shedding of front rectangle is under control of two separated shear layers. The vortex between the two rectangles belongs to Karman type, which is hindered by small spacings thus symmetric vortices are formed. Shielding effects is mainly reflected by the phenomenon that mean drag coefficients of the rear rectangle is smaller than the front one. At the critical spacing ratio, a vortex sheet between the two rectangles is fully established. The mean drag coefficient also has a jump at this spacing ratio, which is still less than that of the front rectangle. In this phase, as Reynolds number increases, the vortex regime, the jump and the critical spacing all become minimized. When Re=400, the vortex shedding of front rectangle is characterized by an impinging-shear-layer, and thw drag coefficient is no longer a regular oscillation. After that as Reynolds number rises, an impinging-shear-layer is established gradually. More vortices on the surface are produced by flow separation of the front rectangle, which leads to a less magnitude of wake vortex. Shielding effect will disappear at this time. A fluctuation impact on the rear rectangle is induced by drastic vortex shedding from the front rectangle. But proper spacing between the two rectangles can make the drag coefficient of the rear rectangle jump, which is larger than that of the front rectangle.
    • 基金项目: 国家重点基础研究发展计划(973计划)项目(批准号:2013CB036301)、国家自然科学基金(批准号:51278366)和土木工程防灾国家重点实验室自主研究课题基金(批准号:SLDRCE09-B-04).
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB036301), the National Natural Science Foundation of China (Grant No. 51278366), and the State Key Laboratory for Disaster Reduction in Civil Engineering (Grant No. SLDRCE09-B-04).
    [1]

    Chang J H, Liu H T, Liu M B, Su T X 2012 Acta Phys. Sin. 61 4704 (in Chinese) [常建忠, 刘汉涛, 刘谋斌, 苏铁熊 2012 物理学报 61 4704]

    [2]

    Guo W B, Wang N C, Shi B C, Guo Z L 2003 Chin. Phys. 12 67

    [3]

    Igarashi T 1981 Bulletin of JSME 188 323

    [4]

    Slaouti A, Stansby P K 1992 J. of Fluids & Struct 6 641

    [5]

    Meneghini J R, Saltara F, Siqueira C L R, Ferrari Jr. J A 2001 J. of Fluids & Struct 15 327

    [6]

    Chen S Q, Huang Z P, Shen J H, Gu M 2001 Journal of Tong-ji University. 29 320 (in Chinese) [陈素琴, 黄自萍, 沈建华, 顾明. 2001 同济大学学报 29 320]

    [7]

    Liu C H, Chen J M 2002 J. Wind Eng. Ind. Aerodyn. 90 1019

    [8]

    Wen B H, Liu H Y, Zhang C Y, Wang Q 2009 Chin. Phys. B 18 4353

    [9]

    Kang X Y, Ji Y P, Liu D H, Jin Y J 2008 Chin. Phys. B 17 1041

    [10]

    Saiki E M, Biringen S 1996 J of Comput Phys 123 450

    [11]

    Li C W, Wang L L 2004 Int. J. Numer. Meth. Fluids 46 85

    [12]

    Fadlun E A, Verzicco R, Orlandi P, Mohd-Yusof 2000 J. of Comput. Phys. 161 35

    [13]

    Gong Z X, Lu C J, Huang H X 2007 Chinese Quarterly of Mechanics 28 353 (in Chinese) [宫兆新, 鲁传敬, 黄华雄 2007 力学季刊 28 353]

    [14]

    Zou L Y, Bai J S, Li B Y, Tan D W, Li P, Liu C L 2008 Chin. Phys. B 17 1034

    [15]

    Nakamura Y, Ohya Y, Tsuruta H 1991 J. of Fluid Mech. 222 437

    [16]

    Nakamura Y, Ohya Y, Ozono S, Nakayama R 1996 J. Wind Eng. Ind. Aerodyn. 65 301

    [17]

    Ohya Y, Nakamura Y, Ozono S, Tsuruta H 1992 J. of Fluid Mech. 236 445

    [18]

    Su Y M, Cui T, Yan D J, Zhao J X, Ju L 2012 Journal of Wuhan University of Technology 34 52 (in Chinese) [苏玉民, 崔桐, 闫岱俊, 赵金鑫, 鞠磊 2012 武汉理工大学学报 34 52]

    [19]

    Berrone S, Garbero V, Marro M 2011 Computers & Fluids 42 92

    [20]

    Liu S Y, Ge Y J 2013 Proceedings of the 12th Americas Conference on Wind Engineering, Seattle, USA, June 16-20, 2013 p2457

    [21]

    Ohya Y, Okajima A, Hayashi M 1989 Encyclopedia of Fluid Mechanics 8 322

  • [1]

    Chang J H, Liu H T, Liu M B, Su T X 2012 Acta Phys. Sin. 61 4704 (in Chinese) [常建忠, 刘汉涛, 刘谋斌, 苏铁熊 2012 物理学报 61 4704]

    [2]

    Guo W B, Wang N C, Shi B C, Guo Z L 2003 Chin. Phys. 12 67

    [3]

    Igarashi T 1981 Bulletin of JSME 188 323

    [4]

    Slaouti A, Stansby P K 1992 J. of Fluids & Struct 6 641

    [5]

    Meneghini J R, Saltara F, Siqueira C L R, Ferrari Jr. J A 2001 J. of Fluids & Struct 15 327

    [6]

    Chen S Q, Huang Z P, Shen J H, Gu M 2001 Journal of Tong-ji University. 29 320 (in Chinese) [陈素琴, 黄自萍, 沈建华, 顾明. 2001 同济大学学报 29 320]

    [7]

    Liu C H, Chen J M 2002 J. Wind Eng. Ind. Aerodyn. 90 1019

    [8]

    Wen B H, Liu H Y, Zhang C Y, Wang Q 2009 Chin. Phys. B 18 4353

    [9]

    Kang X Y, Ji Y P, Liu D H, Jin Y J 2008 Chin. Phys. B 17 1041

    [10]

    Saiki E M, Biringen S 1996 J of Comput Phys 123 450

    [11]

    Li C W, Wang L L 2004 Int. J. Numer. Meth. Fluids 46 85

    [12]

    Fadlun E A, Verzicco R, Orlandi P, Mohd-Yusof 2000 J. of Comput. Phys. 161 35

    [13]

    Gong Z X, Lu C J, Huang H X 2007 Chinese Quarterly of Mechanics 28 353 (in Chinese) [宫兆新, 鲁传敬, 黄华雄 2007 力学季刊 28 353]

    [14]

    Zou L Y, Bai J S, Li B Y, Tan D W, Li P, Liu C L 2008 Chin. Phys. B 17 1034

    [15]

    Nakamura Y, Ohya Y, Tsuruta H 1991 J. of Fluid Mech. 222 437

    [16]

    Nakamura Y, Ohya Y, Ozono S, Nakayama R 1996 J. Wind Eng. Ind. Aerodyn. 65 301

    [17]

    Ohya Y, Nakamura Y, Ozono S, Tsuruta H 1992 J. of Fluid Mech. 236 445

    [18]

    Su Y M, Cui T, Yan D J, Zhao J X, Ju L 2012 Journal of Wuhan University of Technology 34 52 (in Chinese) [苏玉民, 崔桐, 闫岱俊, 赵金鑫, 鞠磊 2012 武汉理工大学学报 34 52]

    [19]

    Berrone S, Garbero V, Marro M 2011 Computers & Fluids 42 92

    [20]

    Liu S Y, Ge Y J 2013 Proceedings of the 12th Americas Conference on Wind Engineering, Seattle, USA, June 16-20, 2013 p2457

    [21]

    Ohya Y, Okajima A, Hayashi M 1989 Encyclopedia of Fluid Mechanics 8 322

  • [1] 段秀铭, 易志军. 介电环境屏蔽效应对二维InX (X = Se, Te)激子结合能调控机制的理论研究. 物理学报, 2023, 72(14): 147102. doi: 10.7498/aps.72.20230528
    [2] 吴晓笛, 刘华坪, 陈浮. 基于浸入边界-多松弛时间格子玻尔兹曼通量求解法的流固耦合算法研究. 物理学报, 2017, 66(22): 224702. doi: 10.7498/aps.66.224702
    [3] 杨欢, 张穗萌, 邢玲玲, 吴兴举, 赵敏福. 电子垂直入射电离氦原子碰撞机理的理论研究. 物理学报, 2017, 66(7): 073401. doi: 10.7498/aps.66.073401
    [4] 阚勇, 闫丽萍, 赵翔, 周海京, 刘强, 黄卡玛. 基于电磁拓扑的多腔体屏蔽效能快速算法. 物理学报, 2016, 65(3): 030702. doi: 10.7498/aps.65.030702
    [5] 田炜, 任新成, 郭立新. 海面与其上方双矩形截面柱复合散射的混合算法研究. 物理学报, 2015, 64(17): 174101. doi: 10.7498/aps.64.174101
    [6] 范杰清, 郝建红, 柒培华. 内部窗口结构对开孔矩形腔体近场屏蔽效能的影响. 物理学报, 2014, 63(1): 014104. doi: 10.7498/aps.63.014104
    [7] 焦重庆, 牛帅. 开孔矩形腔体的近场电磁屏蔽效能研究. 物理学报, 2013, 62(11): 114102. doi: 10.7498/aps.62.114102
    [8] 吕江涛, 赵玉倩, 宋爱娟, 杨琳娟, 张杨宇, 刘艳, 谷琼婵, 姜潇潇, 马振鹤, 王凤文, 司光远. 超小间距纳米柱阵列中的谐振调制. 物理学报, 2013, 62(23): 237806. doi: 10.7498/aps.62.237806
    [9] 杨欢, 邢玲玲, 张穗萌, 吴兴举, 袁好. 屏蔽效应对氦原子(e,2e)反应中二重微分截面和单微分截面的影响. 物理学报, 2013, 62(18): 183402. doi: 10.7498/aps.62.183402
    [10] 汪盛烈, 蔡欣, 刘劲松. 有外加电源的串联光折变晶体回路中的独立空间全息-哈密顿屏蔽孤子对. 物理学报, 2012, 61(6): 064213. doi: 10.7498/aps.61.064213
    [11] 焦重庆, 齐磊. 平面波照射下开孔矩形腔体的电磁耦合与屏蔽效能研究. 物理学报, 2012, 61(13): 134104. doi: 10.7498/aps.61.134104
    [12] 童爱红, 廖青, 周月明, 陆培祥. 不同分子取向下氢分子非次序双电离对核间距的依赖关系. 物理学报, 2011, 60(4): 043301. doi: 10.7498/aps.60.043301
    [13] 杨欢, 邢玲玲, 张穗萌, 吴兴举. 垂直入射几何条件下氦原子(e,2e)反应的理论研究. 物理学报, 2011, 60(10): 103402. doi: 10.7498/aps.60.103402
    [14] 徐艳, 董江涛, 王少华. 基于模糊隶属度的图像空间距离修正插值算法. 物理学报, 2010, 59(11): 7535-7539. doi: 10.7498/aps.59.7535
    [15] 魏雅娜, 杨世平. 分子核间距对非时序双电离的影响. 物理学报, 2010, 59(10): 7298-7305. doi: 10.7498/aps.59.7298
    [16] 蒋建国, 张晋鲁, 周恒为, 张丽丽, 黄以能. 一种推广的Grassberger-Rosenbluth方法以及线性高分子溶液中屏蔽效应的模拟. 物理学报, 2009, 58(9): 5993-5996. doi: 10.7498/aps.58.5993
    [17] 杨欢, 张穗萌, 吴兴举. 大能量损失几何条件下末态屏蔽效应和交换效应的理论研究. 物理学报, 2009, 58(10): 6938-6945. doi: 10.7498/aps.58.6938
    [18] 肖 竞, 柏 鑫, 张耿民. 整齐排列的氧化锌纳米针阵列的场发射性能. 物理学报, 2008, 57(11): 7057-7062. doi: 10.7498/aps.57.7057
    [19] 何国岗, 王晓生, 佘卫龙. 全光准稳态空间孤子对波长的依赖性. 物理学报, 2002, 51(10): 2270-2275. doi: 10.7498/aps.51.2270
    [20] 仝晓民, 李家明. 原子内壳层双光子衰变的相对论效应和屏蔽效应. 物理学报, 1989, 38(9): 1406-1412. doi: 10.7498/aps.38.1406
计量
  • 文章访问数:  4966
  • PDF下载量:  958
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-25
  • 修回日期:  2014-06-05
  • 刊出日期:  2014-11-05

/

返回文章
返回