搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子垂直入射电离氦原子碰撞机理的理论研究

杨欢 张穗萌 邢玲玲 吴兴举 赵敏福

引用本文:
Citation:

电子垂直入射电离氦原子碰撞机理的理论研究

杨欢, 张穗萌, 邢玲玲, 吴兴举, 赵敏福

A theoretical study on collision mechanisms for low energy electron impact ionization of helium in the perpendicular geometry

Yang Huan, Zhang Sui-Meng, Xing Ling-Ling, Wu Xing-Ju, Zhao Min-Fu
PDF
导出引用
  • 用3C模型和修正后的3C模型在低能、两个出射电子等能分享几何条件下,对电子垂直入射碰撞电离氦原子的三重微分散射截面进行了理论计算,并把计算结果与实验测量结果进行了比较,系统研究了(e,2e)反应中各种屏蔽效应对氦原子三重微分散射截面的影响,同时对截面中形成各峰的碰撞机理做了详细的探讨.研究结果表明:在入射能较低时,各种屏蔽效应对氦原子的三重微分散射截面幅度以及角分布均存在一定影响,并且形成各峰的碰撞机理直接影响截面的变化规律.
    Under the condition of ten different incident energies ranging from 3 eV to 80 eV above the ionization potential of helium and the outgoing electrons having equal energies, by making use of 3C model and modified 3C model, the triple differential cross sections of electron-impact single ionization of the ground state of helium in the perpendicular geometry are calculated. The result is compared with corresponding experimental result to systematically investigate the influences of various screening effects on the triple differential cross sections for helium. The collision mechanisms of the triple differential cross sections are explored. The result shows that the effects of dynamic screening in the final state can directly affect the structures of the triple differential cross sections at lower incident energy, which will unavoidably affect the angular distribution and relative amplitude of side peaks at angles =90 and =270. The screening effects of residual electron in the final state of He+ have a similar significant effect on the amplitude of triple differential cross section of helium and angular distributions and relative amplitudes of side peaks at angles =90 and =270. When the incident energy is over 84.6 eV, the screening effect of residual electron in the final state of He+ has a slight effect on the amplitude of triple differential cross section, which can be overlooked. But the effects of dynamic screening in the final state on side peaks at angles =90 and =270 need considering. In addition, by taking advantage of DS3C-Z model, the results of collision mechanism of various peaks at angles =180, =90 and =270 show that the middle peak at angle =180 is produced by a process called triple scattering mechanism and then the side peaks at angles =90 and =270 are produced by a process called double scattering mechanism. Such a collision mechanism has a direct influence on the generation and variation law of triple differential cross sections.
      通信作者: 杨欢, hyang@wxc.edu.cn
    • 基金项目: 安徽省高等学校省级自然科学研究重点项目(批准号:KJ2016A749)、安徽省自然科学基金青年项目(批准号:1408085QA13)、安徽省教育厅自然科学研究重点项目(批准号:KJ2012A275)和安徽省教育厅自然科学研究重点项目(批准号:KJ2013A260)资助的课题.
      Corresponding author: Yang Huan, hyang@wxc.edu.cn
    • Funds: Project supported by the Key Projects of Anhui Provincial Department of Education, China (Grant No. KJ2016A749), the Anhui Provincial Natural Science Foundation, China (Grant No. 1408085QA13), the Foundation for Key Research Program of Education Department of Anhui Province, China (Grant No. KJ2012A275), and the Foundation for Key Research Program of Education Department of Anhui Province, China (Grant No. KJ2013A260).
    [1]

    Harris A L, Esposito T P 2015J. Phys. B:At. Mol. Opt. Phys. 48 215201

    [2]

    Bray I, Guilfoile C J, Kadyrov A S, Fursa D V, Stelbovics A T 2014Phys. Rev. A 90 022710

    [3]

    Abdel-Naby S A, Pindzola M S, Pearce A J, Ballance C P, Loch S D 2015J. Phys. B:At. Mol. Opt. Phys. 48 025203

    [4]

    Kate L, Nixon, Murray A J 2013Phys. Rev. A 87 022712

    [5]

    Cappello C D, Hmouda B, Naja A, Gasaneo G 2013J. Phys. B:At. Mol. Opt. Phys. 46 145203

    [6]

    Yang H, Xing L L, Zhang S M, Wu X J, Yuan H 2013Acta Phys. Sin. 62 183402 (in Chinese)[杨欢, 邢玲玲, 张穂萌, 吴兴举, 袁好2013物理学报62 183402]

    [7]

    Rescigno T N, Baertschy M, Isaacs W A, McCurdy C W 1999Science 286 2474

    [8]

    Zhang X, Whelan C T, Walters H R J 1990J. Phys. B:At. Mol. Opt. Phys. 23 L173

    [9]

    Stelbovics A T, Bray I, Fursa D V, Bartschat K 2005Phys. Rev. A 71 052716

    [10]

    Colgan J, Pindzola M S, Childers G, Khakoo M A 2006Phys. Rev. A 73 042710

    [11]

    Nixon K L, Murray A J, Kaiser C 2010J. Phys. B:At. Mol. Opt. Phys. 43 085202

    [12]

    Brauner M, Briggs J S, Klar H 1989J. Phys. B:At. Mol. Opt. Phys. 22 2265

    [13]

    Zhang S M 2000J. Phys. B:At. Mol. Opt. Phys. 33 3545

    [14]

    Byron F W J, Joachain C J 1966 Phys. Rev. 1461

    [15]

    Berakdar J, Briggs J S 1994 Phys. Rev. Lett. 723799

    [16]

    Gao K, Yang H, Wu X J, Zhang S M 2008 J. At. Mol. Phys. 250683(in Chinese)[高矿, 杨欢, 吴兴举, 张穂萌2008原子与分子物理学报25 0683]

    [17]

    Berakdar J, Briggs J S 1994 J. Phys. B:At. Mol. Opt. Phys. 274271

    [18]

    Al-Hagan O, Kaiser C, Madison D, Murray A J 2009Nat. Phys. 5 59

  • [1]

    Harris A L, Esposito T P 2015J. Phys. B:At. Mol. Opt. Phys. 48 215201

    [2]

    Bray I, Guilfoile C J, Kadyrov A S, Fursa D V, Stelbovics A T 2014Phys. Rev. A 90 022710

    [3]

    Abdel-Naby S A, Pindzola M S, Pearce A J, Ballance C P, Loch S D 2015J. Phys. B:At. Mol. Opt. Phys. 48 025203

    [4]

    Kate L, Nixon, Murray A J 2013Phys. Rev. A 87 022712

    [5]

    Cappello C D, Hmouda B, Naja A, Gasaneo G 2013J. Phys. B:At. Mol. Opt. Phys. 46 145203

    [6]

    Yang H, Xing L L, Zhang S M, Wu X J, Yuan H 2013Acta Phys. Sin. 62 183402 (in Chinese)[杨欢, 邢玲玲, 张穂萌, 吴兴举, 袁好2013物理学报62 183402]

    [7]

    Rescigno T N, Baertschy M, Isaacs W A, McCurdy C W 1999Science 286 2474

    [8]

    Zhang X, Whelan C T, Walters H R J 1990J. Phys. B:At. Mol. Opt. Phys. 23 L173

    [9]

    Stelbovics A T, Bray I, Fursa D V, Bartschat K 2005Phys. Rev. A 71 052716

    [10]

    Colgan J, Pindzola M S, Childers G, Khakoo M A 2006Phys. Rev. A 73 042710

    [11]

    Nixon K L, Murray A J, Kaiser C 2010J. Phys. B:At. Mol. Opt. Phys. 43 085202

    [12]

    Brauner M, Briggs J S, Klar H 1989J. Phys. B:At. Mol. Opt. Phys. 22 2265

    [13]

    Zhang S M 2000J. Phys. B:At. Mol. Opt. Phys. 33 3545

    [14]

    Byron F W J, Joachain C J 1966 Phys. Rev. 1461

    [15]

    Berakdar J, Briggs J S 1994 Phys. Rev. Lett. 723799

    [16]

    Gao K, Yang H, Wu X J, Zhang S M 2008 J. At. Mol. Phys. 250683(in Chinese)[高矿, 杨欢, 吴兴举, 张穂萌2008原子与分子物理学报25 0683]

    [17]

    Berakdar J, Briggs J S 1994 J. Phys. B:At. Mol. Opt. Phys. 274271

    [18]

    Al-Hagan O, Kaiser C, Madison D, Murray A J 2009Nat. Phys. 5 59

  • [1] 赵小刚, 杨浩然, 张琪, 程琳, 张翔宇, 王凤龙, 段丞博, 卓伟, 徐春龙, 侯兆阳. 垂直振动水柱中气泡下沉机理. 物理学报, 2020, 69(24): 244602. doi: 10.7498/aps.69.20200571
    [2] 张亚普, 达新宇, 祝杨坤, 赵蒙. 电大开孔箱体屏蔽效能分析解析模型. 物理学报, 2014, 63(23): 234101. doi: 10.7498/aps.63.234101
    [3] 杨青, 曹曙阳, 刘十一. 基于浸入式边界方法的串联双矩形柱绕流数值模拟. 物理学报, 2014, 63(21): 214702. doi: 10.7498/aps.63.214702
    [4] 杨欢, 邢玲玲, 张穗萌, 吴兴举, 袁好. 屏蔽效应对氦原子(e,2e)反应中二重微分截面和单微分截面的影响. 物理学报, 2013, 62(18): 183402. doi: 10.7498/aps.62.183402
    [5] 陈娟, 张安学, 田春明. 垂直入射条件下金属环的谐振特性. 物理学报, 2012, 61(2): 024102. doi: 10.7498/aps.61.024102
    [6] 杨欢, 张穗萌, 邢玲玲, 吴兴举, 袁好. 氢原子(e, 2e) 反应中二重微分截面的理论研究. 物理学报, 2012, 61(13): 133401. doi: 10.7498/aps.61.133401
    [7] 陈展斌, 杨欢, 张穗萌. 150 eV电子入射电离He原子三重微分截面的动量转移依赖 . 物理学报, 2012, 61(4): 043402. doi: 10.7498/aps.61.043402
    [8] 杨欢, 邢玲玲, 张穗萌, 吴兴举. 垂直入射几何条件下氦原子(e,2e)反应的理论研究. 物理学报, 2011, 60(10): 103402. doi: 10.7498/aps.60.103402
    [9] 蒋建国, 张晋鲁, 周恒为, 张丽丽, 黄以能. 一种推广的Grassberger-Rosenbluth方法以及线性高分子溶液中屏蔽效应的模拟. 物理学报, 2009, 58(9): 5993-5996. doi: 10.7498/aps.58.5993
    [10] 杨欢, 张穗萌, 吴兴举. 大能量损失几何条件下末态屏蔽效应和交换效应的理论研究. 物理学报, 2009, 58(10): 6938-6945. doi: 10.7498/aps.58.6938
    [11] 肖 竞, 柏 鑫, 张耿民. 整齐排列的氧化锌纳米针阵列的场发射性能. 物理学报, 2008, 57(11): 7057-7062. doi: 10.7498/aps.57.7057
    [12] 刘亚红, 宋 娟, 罗春荣, 付全红, 赵晓鹏. 垂直入射条件下厚金属环结构的负磁导率与左手材料行为. 物理学报, 2008, 57(2): 934-939. doi: 10.7498/aps.57.934
    [13] 杨 欢, 高 矿, 吴兴举, 张穗萌. 氢原子(e,2e)反应中BBK模型非一阶效应的理论研究. 物理学报, 2008, 57(3): 1640-1647. doi: 10.7498/aps.57.1640
    [14] 邱华檀, 王友年, 马腾才. 碰撞效应对入射到射频偏压电极上离子能量分布和角度分布的影响. 物理学报, 2002, 51(6): 1332-1337. doi: 10.7498/aps.51.1332
    [15] 何国岗, 王晓生, 佘卫龙. 全光准稳态空间孤子对波长的依赖性. 物理学报, 2002, 51(10): 2270-2275. doi: 10.7498/aps.51.2270
    [16] 张穗萌. (e,2e)反应中碰撞机理的理论研究. 物理学报, 2000, 49(4): 690-695. doi: 10.7498/aps.49.690
    [17] 刘红, 陈宗璋, 彭影翠, 白晓军. K3C60晶体中的电子屏蔽效应. 物理学报, 2000, 49(3): 409-414. doi: 10.7498/aps.49.409
    [18] 宋燠. LiNbO3表面势抗屏蔽措施研究. 物理学报, 1991, 40(4): 646-652. doi: 10.7498/aps.40.646
    [19] 向天翔, 李重德, 王理宗, 吴敏, 黄缨. 碰撞诱导离解(CID)(Ⅱ)——I2(B3∏o+u)在高振动态(v′=62)的碰撞猝灭机理实验研究. 物理学报, 1990, 39(5): 726-734. doi: 10.7498/aps.39.726
    [20] 仝晓民, 李家明. 原子内壳层双光子衰变的相对论效应和屏蔽效应. 物理学报, 1989, 38(9): 1406-1412. doi: 10.7498/aps.38.1406
计量
  • 文章访问数:  2838
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-27
  • 修回日期:  2017-01-07
  • 刊出日期:  2017-04-05

电子垂直入射电离氦原子碰撞机理的理论研究

  • 1. 皖西学院实验实训教学管理部, 六安 237012;
  • 2. 皖西学院原子分子与光学应用研究中心, 六安 237012;
  • 3. 皖西学院电气与光电工程学院, 六安 237012
  • 通信作者: 杨欢, hyang@wxc.edu.cn
    基金项目: 安徽省高等学校省级自然科学研究重点项目(批准号:KJ2016A749)、安徽省自然科学基金青年项目(批准号:1408085QA13)、安徽省教育厅自然科学研究重点项目(批准号:KJ2012A275)和安徽省教育厅自然科学研究重点项目(批准号:KJ2013A260)资助的课题.

摘要: 用3C模型和修正后的3C模型在低能、两个出射电子等能分享几何条件下,对电子垂直入射碰撞电离氦原子的三重微分散射截面进行了理论计算,并把计算结果与实验测量结果进行了比较,系统研究了(e,2e)反应中各种屏蔽效应对氦原子三重微分散射截面的影响,同时对截面中形成各峰的碰撞机理做了详细的探讨.研究结果表明:在入射能较低时,各种屏蔽效应对氦原子的三重微分散射截面幅度以及角分布均存在一定影响,并且形成各峰的碰撞机理直接影响截面的变化规律.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回