搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

垂直振动水柱中气泡下沉机理

赵小刚 杨浩然 张琪 程琳 张翔宇 王凤龙 段丞博 卓伟 徐春龙 侯兆阳

引用本文:
Citation:

垂直振动水柱中气泡下沉机理

赵小刚, 杨浩然, 张琪, 程琳, 张翔宇, 王凤龙, 段丞博, 卓伟, 徐春龙, 侯兆阳

Mechanism of bubble sinking in vertically vibrating water

Zhao Xiao-Gang, Yang Hao-Ran, Zhang Qi, Cheng Lin, Zhang Xiang-Yu, Wang Feng-Long, Duan Cheng-Bo, Zhuo Wei, Xu Chun-Long, Hou Zhao-Yang
PDF
HTML
导出引用
  • 对装有水的容器施加垂直振动, 水中的气泡可能出现下沉的现象. 针对球形气泡构建了基于理想气体方程的气泡运动学模型, 该模型考虑了Basset力对气泡运动的影响. 观察到气泡的运动呈振荡形式, 存在一个临界深度, 气泡在临界深度时稳定振荡, 在临界深度以上时上升, 在临界深度以下时下沉. 采用分离气泡运动和引入收敛因子的方法对Basset力进行理论求解, 并通过等步长复合梯形公式对Basset力进行数值求解. 模型的数值模拟结果表明: 附加质量力是气泡下沉的关键因素, 而Basset力对气泡下沉的临界深度和气泡下沉的前期轨迹无明显影响, 但对气泡下沉的后期轨迹有较大影响. 采用去噪、二值化、填充图像等数字图像处理的办法提取气泡的特征尺寸, 可提高实验参数测量的准确性, 使气泡下沉的临界深度与理论值相匹配.
    When a container filled with water is subjected to vertical vibration, bubbles in the water may sink. This phenomenon exists widely in the field of engineering, and has a non-negligible influence on aerospace engineering and ship engineering. Therefore, it is of great significance to study the movement of bubble sinking in order to reduce the adverse effect caused by bubble sinking in the project. In previous papers, the effect of Basset force on bubble motion was usually ignored. In this paper, the bubble motion model based on the ideal gas equation is built for spherical bubbles, and the influence of the Basset force on the bubble motion is considered in the model. In the process of solving Basset force, the motion is directly separated and the convergence factor is introduced in theoretical solution. The equal step composite trapezoid formula is applied to the numerical solution. The results of numerical calculation show that the added mass force is important for bubble sinking. We find that the Basset force has no effect on the stable oscillation position of bubble, but it can accelerate the later trajectory of bubble motion. Importantly, we demonstrate that the bubble is hindered by the following component forces: buoyancy, viscous resistance, and flow thrust (which are ordered from large to small value). The movement of the bubble is observed to be in the form of oscillation, and there exists a depth, i.e. a critical depth: the bubble oscillate steadily at this depth, specifically, the bubble rises above this depth and sinks below this depth. When the vibration pressure changes, the location of the bubble’s stable oscillation will also be affected. The origin can be ascribed to the change of added mass force caused by the change of vibration pressure. Meanwhile, on the basis of digital image processing method, denoising, filtering, local stretching, image binarization and image filling are used to extract the characteristic dimension of bubbles. The theoretical value of the critical depth of bubble sinking matches the experimental result and their relative error is less than 5%. These new findings enrich the understanding of the moving bubbles in liquid materials used in nuclear reactors, rocket propulsion fuels and chemical experiments.
      通信作者: 赵小刚, zxg_205@163.com ; 杨浩然, 2587687051@qq.com
    • 基金项目: 中央高校基本科研业务费专项资金(批准号: 300102128301, 300102128302)、陕西省自然科学基础研究计划(批准号: 2019JQ-507)和国家大学生创新创业训练计划(批准号: 201910710174)资助的课题
      Corresponding author: Zhao Xiao-Gang, zxg_205@163.com ; Yang Hao-Ran, 2587687051@qq.com
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities (Grant Nos. 300102128301, 300102128302), the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2019JQ-507), and the National for the Innovative University Student Foundation of China (Grant No. 201910710174)
    [1]

    Buchanan R H, Jameson G, Oedjoe D 1962 Ind. Eng. Chem. Fundam. 1 82Google Scholar

    [2]

    Bleich H H 1956 Jet Propul. 26 958Google Scholar

    [3]

    Brennen C E 1982 A Review of Added Mass and Fluid Inertial Forces (Port Hueneme: Naval Civil Engineering Laboratory) pp2−6

    [4]

    Sorokin V S, Blekhman I I, Vasilkov V B 2012 Nonlinear Dyn. 67 147Google Scholar

    [5]

    Ellenberger J, Krishna R 2007 Chem. Eng. Sci. 62 5669Google Scholar

    [6]

    Ellenberger J, Krishna R 2007 Chem. Eng. Sci. 62 7548Google Scholar

    [7]

    Baird M H I 1963 Can. J. Chem. Eng. 41 52Google Scholar

    [8]

    Blekhman I I, Blekhman L I, Vaisberg L A, Vasil’Kov V B, Yakimova K S 2008 Dokl. Phys. 53 520Google Scholar

    [9]

    Crum L A, Eller A I 1970 J. Acoust. Soc. Am. 48 181Google Scholar

    [10]

    Sorokin V S, Blekhman I I, Blekhman L I, Vasilkov V B, Yakimova K S 2011 The 10 th International Conference on Vibration Problems Prague, Czech Republic, September 5–8, 2011 pp127−132

    [11]

    Blekhman I I, Blekhman L I, Sorokin V S, Vaisberg L A, Vasilkov V B, Yakimova K S 2013 Procedia IUTAM 8 43Google Scholar

    [12]

    Sorokin V, Blekhman I I, Thomsen J J 2010 Nonlinear Dyn. 60 639Google Scholar

    [13]

    Houghton G 1963 Proc. R. Soc. Lond. A 272 33Google Scholar

    [14]

    李双 2018 硕士学位论文 (杭州: 浙江大学)

    Li S 2018 M. S. Thesis (Hangzhou: Zhejiang University) (in Chinese)

    [15]

    Zoueshtiagh F, Caps H, Legendre M, Vandewalle N, Petitjeans P, Kurowski P 2006 Eur. Phys. J. E 20 317Google Scholar

    [16]

    田恒斗, 金良安, 迟卫, 房毅, 韩云东, 王涌 2011 力学学报 43 680Google Scholar

    Tian H D, Jin L A, Chi W, Fang Y, Han Y D, Wang Y 2011 Chin. J. Theor. Appl. Mech. 43 680Google Scholar

    [17]

    黄社华, 程良骏 1996 水利学报 54Google Scholar

    Huang S H, Cheng L J 1996 J. Hydraul. Eng. 54Google Scholar

    [18]

    李帅, 孙龙泉, 张阿漫 2014 物理学报 63 184701Google Scholar

    Li S, Sun L Q, Zhang A M 2014 Acta Phys. Sin. 63 184701Google Scholar

    [19]

    田恒斗, 金良安, 丁兆红, 谢田华 2010 化工学报 61 15Google Scholar

    Tian H D, Jin L A, Ding Z H, Xie T H 2010 CIESC J. 61 15Google Scholar

    [20]

    马艳, 林书玉, 徐洁 2018 物理学报 67 034301Google Scholar

    Ma Y, Lin S Y, Xu J 2018 Acta Phys. Sin. 67 034301Google Scholar

    [21]

    沈壮志, 林书玉 2011 物理学报 60 104302Google Scholar

    Shen Z Z, Lin S Y 2011 Acta Phys. Sin. 60 104302Google Scholar

    [22]

    张鹏利, 林书玉, 朱华泽, 张涛 2019 物理学报 68 134301Google Scholar

    Zhang P L, Lin S Y, Zhu H Z, Zhang T 2019 Acta Phys. Sin. 68 134301Google Scholar

    [23]

    Tadaki T, Maeda S 1961 Chem. Eng. 25 254Google Scholar

    [24]

    刘柳 2013 硕士学位论文 (长沙: 中南大学)

    Liu L 2013 M. S. Thesis (Changsha: Central South University) (in Chinese)

    [25]

    Zawala J 2016 Phys Fluids. 28 057103Google Scholar

    [26]

    王红一 2011 博士学位论文 (天津: 天津大学)

    Wang H Y 2011 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese)

    [27]

    Flanders H 1982 Am. Math. Mon. 89 264Google Scholar

    [28]

    曲伟杰 2009 硕士学位论文 (天津: 天津大学)

    Qu W J 2009 M. S. Thesis (Tianjin: Tianjin University) (in Chinese)

    [29]

    Mi kaelian D, Larcy A, Dehaeck S, Haut B 2013 Chem. Eng. Sci. 100 529Google Scholar

    [30]

    Keshavarzi G, Pawell R S, Barber T J, Yeoh G H 2014 Chem. Eng. Sci. 112 25Google Scholar

    [31]

    汤华鹏, 温济铭, 谷海峰 2019 应用科技 46 108Google Scholar

    Tang H P, Wen J M, Gu H F 2019 Appl. Sci. Technol. 46 108Google Scholar

  • 图 1  气泡运动方程的数值模拟 (a) 气泡初始位置为0.1 m; (b) 气泡初始位置为0.05 m; (c) 气泡初始位置为0.076 m

    Fig. 1.  Numerical simulation of the bubble motion equation$ : $ (a) The initial position of the bubble is 0.1 m; (b) the initial position of the bubble is 0.05 m; (c) the initial position of the bubble is 0.076 m.

    图 2  Basset力解析解和数值解的比较

    Fig. 2.  Comparison between the analytical and numerical solutions of Basset forces.

    图 3  Basset力对气泡运动方程的影响

    Fig. 3.  Effect of Basset force on the equation of motion of bubbles.

    图 4  气泡受力分析 (a)气泡下沉前期和后期各个分力的对比; (b) 气泡分力对气泡位移的贡献

    Fig. 4.  Force analysis of bubble: (a) Comparison of component forces in the early and late stages of bubble sinking; (b) contribution of bubble component force to bubble displacement.

    图 5  实验仪器 (a)振动台和瓶子; (b)功率放大器; (c)信号示波器

    Fig. 5.  Experimental instrument: (a) Shaker and bottle; (b) power amplifier; (c) signal oscilloscope.

    图 6  气泡图像处理 (a)背景图像; (b)带有气泡的图像; (c)差影法处理; (d)截取带有气泡的局部图像; (e)去噪; (f)$3 \times 3$滤波; (g)局部拉伸; (h)二值化处理; (i)填充图像

    Fig. 6.  Bubble image processing: (a) Background image; (b) image with bubbles; (c) subtraction processing; (d) local image with bubbles; (e) denoising; (f) $3 \times 3$ filtering; (g) local stretching; (h) image binarization; (i) image filling.

    图 7  理论值与实际值的对比

    Fig. 7.  Comparison between theoretical value and actual value.

  • [1]

    Buchanan R H, Jameson G, Oedjoe D 1962 Ind. Eng. Chem. Fundam. 1 82Google Scholar

    [2]

    Bleich H H 1956 Jet Propul. 26 958Google Scholar

    [3]

    Brennen C E 1982 A Review of Added Mass and Fluid Inertial Forces (Port Hueneme: Naval Civil Engineering Laboratory) pp2−6

    [4]

    Sorokin V S, Blekhman I I, Vasilkov V B 2012 Nonlinear Dyn. 67 147Google Scholar

    [5]

    Ellenberger J, Krishna R 2007 Chem. Eng. Sci. 62 5669Google Scholar

    [6]

    Ellenberger J, Krishna R 2007 Chem. Eng. Sci. 62 7548Google Scholar

    [7]

    Baird M H I 1963 Can. J. Chem. Eng. 41 52Google Scholar

    [8]

    Blekhman I I, Blekhman L I, Vaisberg L A, Vasil’Kov V B, Yakimova K S 2008 Dokl. Phys. 53 520Google Scholar

    [9]

    Crum L A, Eller A I 1970 J. Acoust. Soc. Am. 48 181Google Scholar

    [10]

    Sorokin V S, Blekhman I I, Blekhman L I, Vasilkov V B, Yakimova K S 2011 The 10 th International Conference on Vibration Problems Prague, Czech Republic, September 5–8, 2011 pp127−132

    [11]

    Blekhman I I, Blekhman L I, Sorokin V S, Vaisberg L A, Vasilkov V B, Yakimova K S 2013 Procedia IUTAM 8 43Google Scholar

    [12]

    Sorokin V, Blekhman I I, Thomsen J J 2010 Nonlinear Dyn. 60 639Google Scholar

    [13]

    Houghton G 1963 Proc. R. Soc. Lond. A 272 33Google Scholar

    [14]

    李双 2018 硕士学位论文 (杭州: 浙江大学)

    Li S 2018 M. S. Thesis (Hangzhou: Zhejiang University) (in Chinese)

    [15]

    Zoueshtiagh F, Caps H, Legendre M, Vandewalle N, Petitjeans P, Kurowski P 2006 Eur. Phys. J. E 20 317Google Scholar

    [16]

    田恒斗, 金良安, 迟卫, 房毅, 韩云东, 王涌 2011 力学学报 43 680Google Scholar

    Tian H D, Jin L A, Chi W, Fang Y, Han Y D, Wang Y 2011 Chin. J. Theor. Appl. Mech. 43 680Google Scholar

    [17]

    黄社华, 程良骏 1996 水利学报 54Google Scholar

    Huang S H, Cheng L J 1996 J. Hydraul. Eng. 54Google Scholar

    [18]

    李帅, 孙龙泉, 张阿漫 2014 物理学报 63 184701Google Scholar

    Li S, Sun L Q, Zhang A M 2014 Acta Phys. Sin. 63 184701Google Scholar

    [19]

    田恒斗, 金良安, 丁兆红, 谢田华 2010 化工学报 61 15Google Scholar

    Tian H D, Jin L A, Ding Z H, Xie T H 2010 CIESC J. 61 15Google Scholar

    [20]

    马艳, 林书玉, 徐洁 2018 物理学报 67 034301Google Scholar

    Ma Y, Lin S Y, Xu J 2018 Acta Phys. Sin. 67 034301Google Scholar

    [21]

    沈壮志, 林书玉 2011 物理学报 60 104302Google Scholar

    Shen Z Z, Lin S Y 2011 Acta Phys. Sin. 60 104302Google Scholar

    [22]

    张鹏利, 林书玉, 朱华泽, 张涛 2019 物理学报 68 134301Google Scholar

    Zhang P L, Lin S Y, Zhu H Z, Zhang T 2019 Acta Phys. Sin. 68 134301Google Scholar

    [23]

    Tadaki T, Maeda S 1961 Chem. Eng. 25 254Google Scholar

    [24]

    刘柳 2013 硕士学位论文 (长沙: 中南大学)

    Liu L 2013 M. S. Thesis (Changsha: Central South University) (in Chinese)

    [25]

    Zawala J 2016 Phys Fluids. 28 057103Google Scholar

    [26]

    王红一 2011 博士学位论文 (天津: 天津大学)

    Wang H Y 2011 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese)

    [27]

    Flanders H 1982 Am. Math. Mon. 89 264Google Scholar

    [28]

    曲伟杰 2009 硕士学位论文 (天津: 天津大学)

    Qu W J 2009 M. S. Thesis (Tianjin: Tianjin University) (in Chinese)

    [29]

    Mi kaelian D, Larcy A, Dehaeck S, Haut B 2013 Chem. Eng. Sci. 100 529Google Scholar

    [30]

    Keshavarzi G, Pawell R S, Barber T J, Yeoh G H 2014 Chem. Eng. Sci. 112 25Google Scholar

    [31]

    汤华鹏, 温济铭, 谷海峰 2019 应用科技 46 108Google Scholar

    Tang H P, Wen J M, Gu H F 2019 Appl. Sci. Technol. 46 108Google Scholar

  • [1] 黄晨阳, 李凡, 田华, 胡静, 陈时, 王成会, 郭建中, 莫润阳. 空化场中大气泡对空化泡振动的抑制效应分析. 物理学报, 2023, 72(6): 064302. doi: 10.7498/aps.72.20221955
    [2] 杜清馨, 孙其诚, 丁红胜, 张国华, 范彦丽, 安飞飞. 垂直振动下干湿颗粒样品的体积模量与耗散. 物理学报, 2022, 71(18): 184501. doi: 10.7498/aps.71.20220329
    [3] 吴学由, 梁金福. 超声场中单气泡的平移和非球形振动. 物理学报, 2021, 70(18): 184301. doi: 10.7498/aps.70.20210513
    [4] 马艳, 林书玉, 徐洁. 声场中空化气泡的耦合振动及形状不稳定性的研究. 物理学报, 2018, 67(3): 034301. doi: 10.7498/aps.67.20171573
    [5] 马艳, 林书玉, 鲜晓军. 次Bjerknes力作用下气泡的体积振动和散射声场. 物理学报, 2016, 65(1): 014301. doi: 10.7498/aps.65.014301
    [6] 郑广赢, 黄益旺. 气泡线性振动对含气泡水饱和多孔介质声传播的影响. 物理学报, 2016, 65(23): 234301. doi: 10.7498/aps.65.234301
    [7] 王成会, 莫润阳, 胡静, 陈时. 球状泡群内气泡的耦合振动. 物理学报, 2015, 64(23): 234301. doi: 10.7498/aps.64.234301
    [8] 余田, 张国华, 孙其诚, 赵雪丹, 马文波. 垂直振动激励下颗粒材料有效质量和耗散功率的研究. 物理学报, 2015, 64(4): 044501. doi: 10.7498/aps.64.044501
    [9] 刘传平, 王立, 张富翁. 垂直振动床中的能量传递与耗散. 物理学报, 2014, 63(4): 044502. doi: 10.7498/aps.63.044502
    [10] 陈蓥, 付世晓, 许玉旺, 周青, 范迪夏. 均匀流中近壁面垂直流向振荡圆柱水动力特性研究. 物理学报, 2013, 62(6): 064701. doi: 10.7498/aps.62.064701
    [11] 王成会, 程建春. 弹性微管内气泡的非线性受迫振动. 物理学报, 2013, 62(11): 114301. doi: 10.7498/aps.62.114301
    [12] 王勇, 林书玉, 莫润阳, 张小丽. 含气泡液体中气泡振动的研究. 物理学报, 2013, 62(13): 134304. doi: 10.7498/aps.62.134304
    [13] 彭政, 蒋亦民, 刘锐, 厚美瑛. 垂直振动激发下颗粒物质的能量耗散. 物理学报, 2013, 62(2): 024502. doi: 10.7498/aps.62.024502
    [14] 王成会, 程建春. 微管内气泡的受迫振动. 物理学报, 2012, 61(19): 194303. doi: 10.7498/aps.61.194303
    [15] 王海民, 马建敏, 张文. 两个等径蛋白质气泡在Bingham流体中振动特性. 物理学报, 2010, 59(1): 401-410. doi: 10.7498/aps.59.401
    [16] 杨先清, 刘甫, 贾燕, 邓敏, 郭海萍, 唐刚. 垂直振动颗粒混合气体的振荡现象研究. 物理学报, 2010, 59(2): 1116-1122. doi: 10.7498/aps.59.1116
    [17] 梁宣文, 李粮生, 侯兆国, 吕 震, 杨 雷, 孙 刚, 史庆藩. 垂直振动作用下二元混合颗粒分层的动态循环反转. 物理学报, 2008, 57(4): 2300-2305. doi: 10.7498/aps.57.2300
    [18] 秦卫阳, 王红瑾, 高行山. 非线性恢复力耦合的振动系统广义同步与参数识别. 物理学报, 2008, 57(1): 42-45. doi: 10.7498/aps.57.42
    [19] 杜学能, 胡 林, 孔维姝, 王伟明, 吴 宇. 颗粒物质内部滑动摩擦力的非线性振动现象. 物理学报, 2006, 55(12): 6488-6493. doi: 10.7498/aps.55.6488
    [20] 姜泽辉, 李 斌, 赵海发, 王运鹰, 戴智斌. 竖直振动颗粒物厚层中冲击力分岔现象. 物理学报, 2005, 54(3): 1273-1278. doi: 10.7498/aps.54.1273
计量
  • 文章访问数:  6684
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-18
  • 修回日期:  2020-06-17
  • 上网日期:  2020-12-02
  • 刊出日期:  2020-12-20

/

返回文章
返回