搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液氮低温钙离子光钟的宏运动与附加微运动研究

马子晓 张宝林 黄垚 高克林 管桦

引用本文:
Citation:

液氮低温钙离子光钟的宏运动与附加微运动研究

马子晓, 张宝林, 黄垚, 高克林, 管桦
cstr: 32037.14.aps.74.20250048

Characteristics of secular- and excess micro-motion of a liquid nitrogen-cooled Ca+ ion optical clock

MA Zixiao, ZHANG Baolin, HUANG Yao, GAO Kelin, GUAN Hua
cstr: 32037.14.aps.74.20250048
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 在离子光钟实验系统中, 离子的运动效应是衡量一套光钟性能的主要指标之一, 是目前限制各类不同离子光钟具有更低不确定度的关键影响因素. 在第一套液氮低温钙离子光钟的基础上(2022 Phys. Rev. Appl. 17 034041), 我们研制了新一套液氮钙离子光钟的物理系统, 并对其离子囚禁装置进行了较大改进, 主要包括以下两方面: 通过引入射频电压的主动稳定装置, 将液氮低温钙离子光钟的径向宏运动频率的长期漂移抑制到了小于$1\;\mathrm{kHz}$水平; 通过改进离子阱鞍点位置剩余电压的补偿方案, 进一步将液氮低温钙离子光钟中附加微运动造成的频移抑制至小于$1.0\times10^{-19}$. 这些改进有助于提升离子的冷却效率与提高离子温度的评估精度. 通过对宏运动红蓝边带的测量, 精确评估了Doppler冷却后离子的振动平均声子数, 对应的离子温度为0.78 mK, 接近Doppler冷却极限. 此外, 稳定的宏运动频率为下一步在液氮低温钙离子光钟上实施三维边带冷却创造了良好条件, 也为推动液氮低温钙离子光钟的系统不确定度进一步降低至$10^{-19}$量级打下了基础.
    In ion optical clock systems, the motional effect of trapped ions is a key factor determining clock performance and currently representing a key limitation in achieving lower uncertainty between different ion-based optical clocks. According to the first liquid nitrogen-cooled Ca+ ion optical clock (2022 Phys. Rev. Appl. 17 034041), we develop a new physical system for a second Ca+ ion optical clock and make significant improvements to its ion trapping apparatus. These improvements primarily focus on two aspects. The first aspect is that we design and implement an active stabilization system for the RF voltage, which stabilizes the induced radio-frequency (RF) signal on the compensation electrodes by adjusting the amplitude of the RF source in real time. This method effectively suppresses long-term drifts in the radial secular motion frequencies to less than 1 kHz, achieving stabilized values of $\omega_x = 2\pi \times 3.522(2)\;\mathrm{MHz}$ and $\omega_y = 2\pi \times 3.386(2)\;\mathrm{MHz}$. The induced RF signal is stabilized at 59121.43(12) µV, demonstrating the high precision of the stabilization system. The second aspect is that we optimize the application of compensation voltages by directly integrating the vertical compensation electrodes into an ion trap structure. This refinement can suppress excess micromotion in all three mutually orthogonal directions to an even lower level. Tuning the RF trapping frequency close to the magic trapping condition of the clock transition, we further evaluate the excess micromotion-induced frequency shift in the optical clock to be $2(1) \times 10^{-19}$. To quantitatively assess the secular-motion of the trapped ion, we measure the sideband spectra on the radial and axial motion modes, both red and blue sideband spectra. From these measurements, we accurately determine the mean phonon number in the three motional modes after Doppler cooling, corresponding to an average ion temperature of $0.78(39)\;\mathrm{mK}$, which is close to the Doppler cooling limit. The corresponding second-order Doppler shift is evaluated to be $-(2.71 \pm 1.36) \times 10^{-18}$. The long-term stability of the radial secular motion frequency provides favorable conditions for implementing three-dimensional sideband cooling in future experiments, which will further reduce the second-order Doppler shift. These advancements not only enhance the overall stability of the optical clock but also lay the foundation for reducing its systematic uncertainty to the $10^{-19}$ level.
      通信作者: 黄垚, yaohuang@apm.ac.cn ; 管桦, guanhua@apm.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFB3904001, 2022YFB3904004)、科技创新2030-“量子通信与量子计算机”重大项目(批准号: 2021ZD0300901)、国家自然科学基金(批准号: 12204494, 12121004, 12320101003, 11934014)和湖北省科学基金(批准号: 2023EHA006, 2022CFA013)资助的课题.
      Corresponding author: HUANG Yao, yaohuang@apm.ac.cn ; GUAN Hua, guanhua@apm.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2022YFB3904001, 2022YFB3904004), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0300901), the National Natural Science Foundation of China (Grant Nos. 12204494, 12121004, 12320101003, 11934014), and the Natural Science Foundation of Hubei Province, China (Grant Nos. 2023EHA006, 2022CFA013).
    [1]

    Chen J 2009 Chin. Sci. Bull. 54 348Google Scholar

    [2]

    Dimarcq N, Gertsvolf M, Mileti G, Bize S, Oates C W, Peik E, Calonico D, Ido T, Tavella P, Meynadier F, Petit G, Panfilo G, Bartholomew J, Defraigne P, Donley E A, Hedekvist P O, Sesia I, Wouters M, Dubé P, Fang F, Levi F, Lodewyck J, Margolis H S, Newell D, Slyusarev S, Weyers S, Uzan J P, Yasuda M, Yu D H, Rieck C, Schnatz H, Hanado Y, Fujieda M, Pottie P E, Hanssen J, Malimon A, Ashby N 2024 Metrologia 61 012001Google Scholar

    [3]

    Riehle F, Gill P, Arias F, Robertsson L 2018 Metrologia 55 188Google Scholar

    [4]

    Gill P 2016 J. Phys. Conf. Ser. 723 012053Google Scholar

    [5]

    Takano T, Takamoto M, Ushijima I, Ohmae N, Akatsuka T, Yamaguchi A, Kuroishi Y, Munekane H, Miyahara B, Katori H 2016 Nat. Photonics 10 662Google Scholar

    [6]

    Schuldt T, Gohlke M, Oswald M, Wüst J, Blomberg T, Döringshoff K, Bawamia A, Wicht A, Lezius M, Voss K, Krutzik M, Herrmann S, Kovalchuk E, Peters A, Braxmaier C 2021 GPS Solutions 25 83Google Scholar

    [7]

    Takamoto M, Ushijima I, Ohmae N, Yahagi T, Kokado K, Shinkai H, Katori H 2020 Nat. Photonics 14 411Google Scholar

    [8]

    Sanner C, Huntemann N, Lange R, Tamm C, Peik E, Safronova M S, Porsev S G 2019 Nature 567 204Google Scholar

    [9]

    Mehlstäubler T E, Grosche G, Lisdat C, Schmidt P O, Denker H 2018 Rep. Prog. Phys. 81 064401Google Scholar

    [10]

    Gilmore K A, Affolter M, Lewis-Swan R J, Barberena D, Jordan E, Rey A M, Bollinger J J 2021 Science 373 673Google Scholar

    [11]

    Huntemann N, Lipphardt B, Tamm C, Gerginov V, Weyers S, Peik E 2014 Phys. Rev. Lett. 113 210802Google Scholar

    [12]

    Chou C W, Hume D B, Rosenband T, Wineland D J 2010 Science 329 1630Google Scholar

    [13]

    Filzinger M, Dörscher S, Lange R, Klose J, Steinel M, Benkler E, Peik E, Lisdat C, Huntemann N 2023 Phys. Rev. Lett. 130 253001Google Scholar

    [14]

    Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L, Ye J 2016 Phys. Rev. D 94 124043Google Scholar

    [15]

    McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, Ludlow A D 2018 Nature 564 87Google Scholar

    [16]

    Aeppli A, Kim K, Warfield W, Safronova M S, Ye J 2024 Phys. Rev. Lett. 133 023401Google Scholar

    [17]

    Ma Z Y, Deng K, Wang Z Y, Wei W Z, Hao P, Zhang H X, Pang L R, Wang B, Wu F F, Liu H L, Yuan W H, Chang J L, Zhang J X, Wu Q Y, Zhang J, Lu Z H 2024 Phys. Rev. Appl. 21 044017Google Scholar

    [18]

    Li J, Cui X Y, Jia Z P, Kong D Q, Yu H W, Zhu X Q, Liu X Y, Wang D Z, Zhang X, Huang X Y, Zhu M Y, Yang Y M, Hu Y, Liu X P, Zhai X M, Liu P, Jiang X, Xu P, Dai H N, Chen Y A, Pan J W 2024 Metrologia 61 015006Google Scholar

    [19]

    Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nat. Photonics 9 185Google Scholar

    [20]

    Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, Leibrandt D R 2019 Phys. Rev. Lett. 123 033201Google Scholar

    [21]

    Huang Y, Zhang B, Zeng M, Hao Y, Ma Z, Zhang H, Guan H, Chen Z, Wang M, Gao K 2022 Phys. Rev. Appl. 17 034041Google Scholar

    [22]

    Tofful A, Baynham C F A, Curtis E A, Parsons A O, Robertson B I, Schioppo M, Tunesi J, Margolis H S, Hendricks R J, Whale J, Thompson R C, Godun R M 2024 Metrologia 61 045001Google Scholar

    [23]

    Lu B K, Sun Z, Yang T, Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Li T C, Fang Z J 2022 Chin. Phys. Lett. 39 080601Google Scholar

    [24]

    Zhiqiang Z, Arnold K J, Kaewuam R, Barrett M D 2023 Sci. Adv. 9 eadg1971Google Scholar

    [25]

    Lu X, Guo F, Wang Y, Xu Q, Zhou C, Xia J, Wu W, Chang H 2023 Metrologia 60 015008Google Scholar

    [26]

    Arnold K J, Kaewuam R, Roy A, Tan T R, Barrett M D 2018 Nat. Commun. 9 1650Google Scholar

    [27]

    Dubé P, Madej A A, Tibbo M, Bernard J E 2014 Phys. Rev. Lett. 112 173002Google Scholar

    [28]

    Huang Y, Guan H, Zeng M, Tang L, Gao K 2019 Phys. Rev. A 99 011401Google Scholar

    [29]

    Porsev S G, Derevianko A 2006 Phys. Rev. A 74 020502Google Scholar

    [30]

    Angstmann E J, Dzuba V A, Flambaum V V 2006 Phys. Rev. Lett. 97 040802Google Scholar

    [31]

    Zeng M, Huang Y, Zhang B, Hao Y, Ma Z, Hu R, Zhang H, Chen Z, Wang M, Guan H, Gao K 2023 Phys. Rev. Appl. 19 064004Google Scholar

    [32]

    Bothwell T, Kedar D, Oelker E, Robinson J M, Bromley S L, Tew W L, Ye J, Kennedy C J 2019 Metrologia 56 065004Google Scholar

    [33]

    Doležal M, Balling P, Nisbet-Jones P B R, King S A, Jones J M, Klein H A, Gill P, Lindvall T, Wallin A E, Merimaa M, Tamm C, Sanner C, Huntemann N, Scharnhorst N, Leroux I D, Schmidt P O, Burgermeister T, Mehlstäubler T E, Peik E 2015 Metrologia 52 842Google Scholar

    [34]

    Zeng M, Huang Y, Zhang B, Ma Z, Hao Y, Hu R, Zhang H, Guan H, Gao K 2023 Chin. Phys. B 32 113701Google Scholar

    [35]

    Berkeland D J, Miller J D, Bergquist J C, Itano W M, Wineland D J 1998 J. Appl. Phys. 83 5025Google Scholar

    [36]

    Chen J S, Brewer S M, Chou C W, Wineland D J, Leibrandt D R, Hume D B 2017 Phys. Rev. Lett. 118 053002Google Scholar

    [37]

    Keller J, Partner H L, Burgermeister T, Mehlstäubler T E 2015 J. Appl. Phys. 118 104501Google Scholar

    [38]

    Wineland D J, Monroe C, Itano W M, Leibfried D, King B E, Meekhof D M 1998 J. Res. Nat. Inst. Stand. Technol. 103 259Google Scholar

    [39]

    James D F V 1998 Appl. Phys. B 66 181Google Scholar

    [40]

    Zhang B, Huang Y, Hao Y, Zhang H, Zeng M, Guan H, Gao K 2020 J. Appl. Phys. 128 143105Google Scholar

    [41]

    Zhang B, Huang Y, Zhang H, Hao Y, Zeng M, Guan H, Gao K 2020 Chin. Phys. B 29 074209Google Scholar

    [42]

    Dubé P, Madej A A, Zhou Z, Bernard J E 2013 Phys. Rev. A 87 023806Google Scholar

    [43]

    Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E 2016 Phys. Rev. Lett. 116 063001Google Scholar

    [44]

    Chou C W, Hume D B, Koelemeij J C J, Wineland D J, Rosenband T 2010 Phys. Rev. Lett. 104 070802Google Scholar

  • 图 1  新建低温系统离子阱部分装置图. 显著特征包括(a)液氮入口; (b)不锈钢真空壁; (c)高纯无氧铜液氮桶; (d)射频电极馈通; (e)黑体辐射屏蔽腔; (f)观察窗; (g)离子阱; (h)谐振器; (i)软铜导线; (j)绝缘陶瓷; (k)帽电极; (l) PT100测温探头; (m)离子阱底座; (n)电压传输钢丝. 离子阱左侧的其中一对电极上接交流信号, 右侧的两个直流电极用于离子的水平方向及竖直方向的补偿

    Fig. 1.  Schematic of the ion trap section in the newly developed low-temperature system. Key features include: (a) Liquid nitrogen inlet; (b) stainless steel vacuum chamber; (c) oxygen-free high copper (OFHC) liquid nitrogen container; (d) RF electrode feedthrough; (e) blackbody radiation shielding chamber; (f) viewports; (g) ion trap; (h) helical resonator; (i) soft copper wire; (j) insulating ceramic; (k) cap electrode; (l) PT100 resistance temperature detector; (m) trap base; (n) voltage transmission steel wire. One pair of electrodes on the left side of the ion trap is connected to an AC signal, while the two DC electrodes on the right side are used for compensation in the horizontal and vertical directions of the ions.

    图 2  射频电压主动稳定装置系统框图. 射频电势幅值的稳定通过偏置器(Bias Tee)、射频检波器以及信号源的幅度调制功能来实现. 蓝色方框区域表示主动反馈控制回路, 其工作原理是: 采集补偿电极上的射频感应电压, 经反馈回路处理后, 将射频驱动电压信号锁定, 并反馈至射频信号源的幅度调制端口

    Fig. 2.  Block diagram of the active RF voltage stabilization system. The stabilization of the RF potential amplitude is achieved using a Bias Tee, an RF detector, and the amplitude modulation function of the signal source. The blue box indicates the active feedback control loop, which operates by detecting the RF-induced voltage on the compensation electrode, processing it through the feedback loop, and feeding it back to the amplitude modulation input of the RF signal generator to lock the RF drive voltage signal.

    图 3  射频电压主动稳定装置的实验效果 (a), (c), (e)与(g)分别显示了在稳压电路未开启时宏运动频率与感应信号幅值的变化情况, 径向的宏运动频率与感应信号的变化一致; (b), (d), (f)与(h)分别为稳压电路开启时的宏运动频率与感应信号幅值的变化情况

    Fig. 3.  Measurement results of the secular frequency and induced voltage: (a), (c), (e) and (g) show the variations in motional frequencies and induced signal amplitudes when the stabilization circuit is off, where the changes in radial motional frequencies are consistent with those in the induced signals. (b), (d), (f) and (h) present the corresponding variations when the stabilization circuit is on.

    图 4  第一代(左侧)和第二代(右侧)液氮低温光钟的离子囚禁装置示意图

    Fig. 4.  Schematic comparison of the ion trap devices used in the first-generation (left) and the improved second-generation (right) liquid nitrogen cooled optical clocks.

    图 5  三维正交方向上载波与微运动边带的Rabi振荡. 图中圆点为实验测得的跃迁概率, 通过100次重复探测得到. 橘黄色虚线是对实验数据的sin函数拟合

    Fig. 5.  Rabi oscillations of the carrier and micromotion sidebands along three orthogonal directions. The dots represent the experimentally measured transition probabilities, obtained by averaging 100 repeated measurements. The orange curve is a sinusoidal fit to the experimental data.

    图 6  (a) 红边带和(b)蓝边带的跃迁谱线, 其中探测时间为20 μs, 红色和蓝色的圆点表示实验测得的跃迁概率, 对应的红色与蓝色实线是通过sinc函数对实验数据的拟合; (c) Doppler冷却后红蓝边带的Rabi振荡. 每个跃迁概率均通过200次重复实验得到

    Fig. 6.  (a) Red and (b) blue sideband transition spectra, respectively, with an interrogation time of 20 µs for per measurement. The red and blue dots represent the experimentally measured transition probabilities, while the corresponding red and blue curves are sinc function fits to the data. (c) The Rabi oscillations of the red and blue sidebands after Doppler cooling. Each data point represents the average transition probability obtained from 200 repeated measurements.

  • [1]

    Chen J 2009 Chin. Sci. Bull. 54 348Google Scholar

    [2]

    Dimarcq N, Gertsvolf M, Mileti G, Bize S, Oates C W, Peik E, Calonico D, Ido T, Tavella P, Meynadier F, Petit G, Panfilo G, Bartholomew J, Defraigne P, Donley E A, Hedekvist P O, Sesia I, Wouters M, Dubé P, Fang F, Levi F, Lodewyck J, Margolis H S, Newell D, Slyusarev S, Weyers S, Uzan J P, Yasuda M, Yu D H, Rieck C, Schnatz H, Hanado Y, Fujieda M, Pottie P E, Hanssen J, Malimon A, Ashby N 2024 Metrologia 61 012001Google Scholar

    [3]

    Riehle F, Gill P, Arias F, Robertsson L 2018 Metrologia 55 188Google Scholar

    [4]

    Gill P 2016 J. Phys. Conf. Ser. 723 012053Google Scholar

    [5]

    Takano T, Takamoto M, Ushijima I, Ohmae N, Akatsuka T, Yamaguchi A, Kuroishi Y, Munekane H, Miyahara B, Katori H 2016 Nat. Photonics 10 662Google Scholar

    [6]

    Schuldt T, Gohlke M, Oswald M, Wüst J, Blomberg T, Döringshoff K, Bawamia A, Wicht A, Lezius M, Voss K, Krutzik M, Herrmann S, Kovalchuk E, Peters A, Braxmaier C 2021 GPS Solutions 25 83Google Scholar

    [7]

    Takamoto M, Ushijima I, Ohmae N, Yahagi T, Kokado K, Shinkai H, Katori H 2020 Nat. Photonics 14 411Google Scholar

    [8]

    Sanner C, Huntemann N, Lange R, Tamm C, Peik E, Safronova M S, Porsev S G 2019 Nature 567 204Google Scholar

    [9]

    Mehlstäubler T E, Grosche G, Lisdat C, Schmidt P O, Denker H 2018 Rep. Prog. Phys. 81 064401Google Scholar

    [10]

    Gilmore K A, Affolter M, Lewis-Swan R J, Barberena D, Jordan E, Rey A M, Bollinger J J 2021 Science 373 673Google Scholar

    [11]

    Huntemann N, Lipphardt B, Tamm C, Gerginov V, Weyers S, Peik E 2014 Phys. Rev. Lett. 113 210802Google Scholar

    [12]

    Chou C W, Hume D B, Rosenband T, Wineland D J 2010 Science 329 1630Google Scholar

    [13]

    Filzinger M, Dörscher S, Lange R, Klose J, Steinel M, Benkler E, Peik E, Lisdat C, Huntemann N 2023 Phys. Rev. Lett. 130 253001Google Scholar

    [14]

    Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L, Ye J 2016 Phys. Rev. D 94 124043Google Scholar

    [15]

    McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, Ludlow A D 2018 Nature 564 87Google Scholar

    [16]

    Aeppli A, Kim K, Warfield W, Safronova M S, Ye J 2024 Phys. Rev. Lett. 133 023401Google Scholar

    [17]

    Ma Z Y, Deng K, Wang Z Y, Wei W Z, Hao P, Zhang H X, Pang L R, Wang B, Wu F F, Liu H L, Yuan W H, Chang J L, Zhang J X, Wu Q Y, Zhang J, Lu Z H 2024 Phys. Rev. Appl. 21 044017Google Scholar

    [18]

    Li J, Cui X Y, Jia Z P, Kong D Q, Yu H W, Zhu X Q, Liu X Y, Wang D Z, Zhang X, Huang X Y, Zhu M Y, Yang Y M, Hu Y, Liu X P, Zhai X M, Liu P, Jiang X, Xu P, Dai H N, Chen Y A, Pan J W 2024 Metrologia 61 015006Google Scholar

    [19]

    Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nat. Photonics 9 185Google Scholar

    [20]

    Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, Leibrandt D R 2019 Phys. Rev. Lett. 123 033201Google Scholar

    [21]

    Huang Y, Zhang B, Zeng M, Hao Y, Ma Z, Zhang H, Guan H, Chen Z, Wang M, Gao K 2022 Phys. Rev. Appl. 17 034041Google Scholar

    [22]

    Tofful A, Baynham C F A, Curtis E A, Parsons A O, Robertson B I, Schioppo M, Tunesi J, Margolis H S, Hendricks R J, Whale J, Thompson R C, Godun R M 2024 Metrologia 61 045001Google Scholar

    [23]

    Lu B K, Sun Z, Yang T, Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Li T C, Fang Z J 2022 Chin. Phys. Lett. 39 080601Google Scholar

    [24]

    Zhiqiang Z, Arnold K J, Kaewuam R, Barrett M D 2023 Sci. Adv. 9 eadg1971Google Scholar

    [25]

    Lu X, Guo F, Wang Y, Xu Q, Zhou C, Xia J, Wu W, Chang H 2023 Metrologia 60 015008Google Scholar

    [26]

    Arnold K J, Kaewuam R, Roy A, Tan T R, Barrett M D 2018 Nat. Commun. 9 1650Google Scholar

    [27]

    Dubé P, Madej A A, Tibbo M, Bernard J E 2014 Phys. Rev. Lett. 112 173002Google Scholar

    [28]

    Huang Y, Guan H, Zeng M, Tang L, Gao K 2019 Phys. Rev. A 99 011401Google Scholar

    [29]

    Porsev S G, Derevianko A 2006 Phys. Rev. A 74 020502Google Scholar

    [30]

    Angstmann E J, Dzuba V A, Flambaum V V 2006 Phys. Rev. Lett. 97 040802Google Scholar

    [31]

    Zeng M, Huang Y, Zhang B, Hao Y, Ma Z, Hu R, Zhang H, Chen Z, Wang M, Guan H, Gao K 2023 Phys. Rev. Appl. 19 064004Google Scholar

    [32]

    Bothwell T, Kedar D, Oelker E, Robinson J M, Bromley S L, Tew W L, Ye J, Kennedy C J 2019 Metrologia 56 065004Google Scholar

    [33]

    Doležal M, Balling P, Nisbet-Jones P B R, King S A, Jones J M, Klein H A, Gill P, Lindvall T, Wallin A E, Merimaa M, Tamm C, Sanner C, Huntemann N, Scharnhorst N, Leroux I D, Schmidt P O, Burgermeister T, Mehlstäubler T E, Peik E 2015 Metrologia 52 842Google Scholar

    [34]

    Zeng M, Huang Y, Zhang B, Ma Z, Hao Y, Hu R, Zhang H, Guan H, Gao K 2023 Chin. Phys. B 32 113701Google Scholar

    [35]

    Berkeland D J, Miller J D, Bergquist J C, Itano W M, Wineland D J 1998 J. Appl. Phys. 83 5025Google Scholar

    [36]

    Chen J S, Brewer S M, Chou C W, Wineland D J, Leibrandt D R, Hume D B 2017 Phys. Rev. Lett. 118 053002Google Scholar

    [37]

    Keller J, Partner H L, Burgermeister T, Mehlstäubler T E 2015 J. Appl. Phys. 118 104501Google Scholar

    [38]

    Wineland D J, Monroe C, Itano W M, Leibfried D, King B E, Meekhof D M 1998 J. Res. Nat. Inst. Stand. Technol. 103 259Google Scholar

    [39]

    James D F V 1998 Appl. Phys. B 66 181Google Scholar

    [40]

    Zhang B, Huang Y, Hao Y, Zhang H, Zeng M, Guan H, Gao K 2020 J. Appl. Phys. 128 143105Google Scholar

    [41]

    Zhang B, Huang Y, Zhang H, Hao Y, Zeng M, Guan H, Gao K 2020 Chin. Phys. B 29 074209Google Scholar

    [42]

    Dubé P, Madej A A, Zhou Z, Bernard J E 2013 Phys. Rev. A 87 023806Google Scholar

    [43]

    Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E 2016 Phys. Rev. Lett. 116 063001Google Scholar

    [44]

    Chou C W, Hume D B, Koelemeij J C J, Wineland D J, Rosenband T 2010 Phys. Rev. Lett. 104 070802Google Scholar

  • [1] 陈思, 张海洋, 靳发宏, 汪林, 赵长明. 运动目标的多维度微运动特征提取研究. 物理学报, 2024, 73(7): 074204. doi: 10.7498/aps.73.20231691
    [2] 黄远志, 杨传浩, 何颂平, 马瑞松, 郇庆. 基于干式制冷的低温扫描探针显微镜研究进展. 物理学报, 2024, 73(22): 228701. doi: 10.7498/aps.73.20241367
    [3] 张洪硕, 周勇壮, 沈咏, 邹宏新. 线型离子阱中钙离子库仑晶体结构和运动轨迹模拟. 物理学报, 2023, 72(1): 013701. doi: 10.7498/aps.72.20221674
    [4] 厉桂华, 张梦雅, 马慧, 田悦, 焦安欣, 郑林启, 王畅, 陈明, 刘向东, 李爽, 崔清强, 李冠华. 低温促进表面等离激元共振效应及肌酐的超灵敏表面增强拉曼散射探测. 物理学报, 2022, 71(14): 146101. doi: 10.7498/aps.71.20220151
    [5] 秦璐, 任杰, 许兴胜. 垂直腔面发射激光器低温光电特性. 物理学报, 2019, 68(19): 194203. doi: 10.7498/aps.68.20190427
    [6] 魏梦举, 陈力, 伍涛, 张鸿雁, 崔海航. 微尺度空泡溃灭驱使微球运动的机理研究. 物理学报, 2017, 66(16): 164702. doi: 10.7498/aps.66.164702
    [7] 丁琨, 武雪飞, 窦秀明, 孙宝权. 电驱动金刚石对顶砧低温连续加压装置. 物理学报, 2016, 65(3): 037701. doi: 10.7498/aps.65.037701
    [8] 曹山, 刘江平, 黎军, 王凯, 林伟, 雷海乐. 近三相点氮分子固体的低温红外吸收特性研究. 物理学报, 2015, 64(7): 073301. doi: 10.7498/aps.64.073301
    [9] 阳志强, 吴振森, 张耿, 巩蕾. 旋转粗糙目标微运动特征识别技术. 物理学报, 2014, 63(21): 210301. doi: 10.7498/aps.63.210301
    [10] 李铭杰, 高红, 李江禄, 温静, 李凯, 张伟光. 低温下单根ZnO纳米带电学性质的研究. 物理学报, 2013, 62(18): 187302. doi: 10.7498/aps.62.187302
    [11] 何永周, 周巧根. 上海光源低温波荡器永磁铁在低温下的磁特性研究. 物理学报, 2013, 62(4): 044106. doi: 10.7498/aps.62.044106
    [12] 张明焜, 陈硕, 尚智. 带凹槽的微通道中液滴运动数值模拟. 物理学报, 2012, 61(3): 034701. doi: 10.7498/aps.61.034701
    [13] 王绍良, 李亮, 欧阳钟文, 夏正才, 夏念明, 彭涛, 张凯波. 脉冲强磁场高频电子自旋共振装置的研制. 物理学报, 2012, 61(10): 107601. doi: 10.7498/aps.61.107601
    [14] 刘天元, 孙成林, 里佐威, 周密. Raman光谱方法研究三氯甲烷与苯分子间的 C/H相互作用. 物理学报, 2012, 61(10): 107801. doi: 10.7498/aps.61.107801
    [15] 胡艺, 葛云, 章东, 郑海荣, 龚秀芬. 调频超声脉冲驱动微气泡运动偏移的研究. 物理学报, 2009, 58(7): 4746-4751. doi: 10.7498/aps.58.4746
    [16] 丁彩英, 谭 磊, 刘利伟, 徐 岩. 量子微腔中运动原子的辐射压力. 物理学报, 2008, 57(9): 5612-5619. doi: 10.7498/aps.57.5612
    [17] 厉旭杰, 聂秋华, 戴世勋, 徐铁峰, 沈 祥, 章向华. 低温下Er3+/Yb3+共掺碲酸盐玻璃的发光特性研究. 物理学报, 2008, 57(5): 3001-3005. doi: 10.7498/aps.57.3001
    [18] 徐耿钊, 梁 琥, 白永强, 刘纪美, 朱 星. 低温近场光学显微术对InGaN/GaN多量子阱电致发光温度特性的研究. 物理学报, 2005, 54(11): 5344-5349. doi: 10.7498/aps.54.5344
    [19] 张廷庆, 刘传洋, 刘家璐, 王剑屏, 黄智, 徐娜军, 何宝平, 彭宏论, 姚育娟. 低温低剂量率下金属-氧化物-半导体器件的辐照效应. 物理学报, 2001, 50(12): 2434-2438. doi: 10.7498/aps.50.2434
    [20] 陶云. 低温下铁磁和反铁磁体系的运动学相互作用. 物理学报, 1966, 22(4): 449-459. doi: 10.7498/aps.22.449
计量
  • 文章访问数:  374
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-13
  • 修回日期:  2025-02-07
  • 上网日期:  2025-02-27

/

返回文章
返回