搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于光纤内马赫-曾德尔干涉仪的低频声传感方案

胡晓 田晶 田佳俊 陈富城 陈小杰 杨诗宇 江阳

引用本文:
Citation:

一种基于光纤内马赫-曾德尔干涉仪的低频声传感方案

胡晓, 田晶, 田佳俊, 陈富城, 陈小杰, 杨诗宇, 江阳
cstr: 32037.14.aps.74.20241758

A low-frequency acoustic sensor scheme based on an in-fiber Mach-Zehnder interferometer

HU Xiao, TIAN Jing, TIAN Jiajun, CHEN Fucheng, CHEN Xiaojie, YANG Shiyu, JIANG Yang
cstr: 32037.14.aps.74.20241758
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 提出了一种基于光纤内马赫-曾德尔干涉仪结构的低频声传感方案, 其中传感光纤是由多模-超高数值孔径-多模光纤焊接级联而成的微型马赫-曾德尔干涉仪, 可有效提高光纤弯曲灵敏度; 然后将该干涉仪结构与聚对苯二甲酸乙二酯换能膜片进行组合, 使得传感光纤在受到声压作用时与膜片同步产生曲率变化, 间接增大了光纤接收声场的面积. 文章推导了该系统的声传感理论, 并通过实验进行了验证, 得到传感系统在65 Hz处信噪比约为57 dB, 最小可探测声压为267.9 ${\text{μPa/H}}{{\text{z}}^{{\text{1/2}}}}$; 在50—500 Hz的频率范围内, 对声波有较好响应, 信噪比均在40 dB以上, 信号较平坦. 该方案可显著提升传感系统声响应能力, 实现对低频声波的有效检测, 且具有制作简单、成本低的特点, 在声波探测相关应用领域具有较大的发展潜力.
    In this work, a low-frequency acoustic sensing scheme is proposed based on the structure of in-fiber Mach-Zehnder interferometer , in which the refractive index difference between fiber core and cladding is used to form a miniature Mach-Zehnder interferometer through fusion splicing of specialty optical fibers in a multi-mode-ultra-high numerical aperture-multi-mode configuration. This design achieves modal recombination between cladding and core modes, thereby effectively enhancing fiber bending sensitivity. The interferometer structure is then combined with a polyethylene terephthalate (PET) transducer diaphragm, enabling the sensing fiber to undergo curvature changes synchronously with the diaphragm under sound pressure, thereby indirectly increasing the area over which the fiber receives the acoustic field. When external acoustic pressure induces bending modulation on both the sensing fiber and transducer diaphragm, the differential strain distribution between the fiber cladding and core generates an optical path difference. This manifests itself in interference spectrum shifts, enabling the effective detection of low-frequency acoustic signals through demodulating the spectrum variations. In the paper, the theoretical framework for the acoustic sensing system is derived and validated experimentally. The results show that at 65 Hz, the system achieves a signal-to-noise ratio (SNR) of approximately 57 dB and a minimum detectable sound pressure of $267.9{\text{ μPa/H}}{{\text{z}}^{{{1/2}}}}$at 65 Hz. In a frequency range of 50–500 Hz, the system exhibits good acoustic response, with an SNR consistently above 40 dB and a relatively flat signal output. This scheme significantly enhances the acoustic response capability of the sensing system, enabling the effective detection of low-frequency acoustic waves. Additionally, it features simple fabrication and low cost, showing great potential for the development of acoustic wave detection applications.
      通信作者: 田晶, jtian1@gzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61801134, 61835003)、贵州大学审核评估专项(批准号: GDSHPG2023007)和贵州大学课程体系改革项目(批准号: XJG2024045)资助的课题.
      Corresponding author: TIAN Jing, jtian1@gzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61801134, 61835003), the Special Review and Evaluation Program of Guizhou University, China (Grant No. GDSHPG2023007), and the Curriculum System Reform Project of Guizhou University, China (Grant No. XJG2024045).
    [1]

    Zhao Y, Chen M Q, Xia F, Lv R Q 2018 Sensor Acoust. A-Phys. 270 162Google Scholar

    [2]

    Shnaiderman R, Wissmeyer G, Seeger M, Soliman D, Estrada H, Razansky D, Rosenthal A, Ntziachristos V 2017 Optica 4 1180Google Scholar

    [3]

    Basiri-Esfahani S, Armin A, Forstner S, Bowen W P 2019 Nat. Commun. 10 132Google Scholar

    [4]

    Mydlarz C, Salamon J, Bello J P 2017 Appl. Acoustics 117 207Google Scholar

    [5]

    Jia J, Jiang Y, Zhang L, Gao H, Jiang L 2019 IEEE Sens. J. 19 7988Google Scholar

    [6]

    刘欣, 蔡宸, 董志飞, 邓欣, 胡昕宇, 祁志美 2022 物理学报 71 094301Google Scholar

    Liu X, Cai C, Dong Z F, Deng X, Hu X Y, Qi Z M 2022 Acta Phys. Sin. 71 094301Google Scholar

    [7]

    Gong Z F, Chen K, Zhou X L, Yang Y, Zhao Z H, Zou H L, Yu Q X 2017 J. Lightwave Technol. 35 5276Google Scholar

    [8]

    Xu Y P, Zhang L, Gao S, Lu P, Mihailov S, Bao X Y 2017 Opt. Lett. 42 1353Google Scholar

    [9]

    Li Y, Tian J J, Fu Q, Sun Y X, Yao Y 2019 J. Lightwave Technol. 37 1160Google Scholar

    [10]

    Dass S, Chatterjee K, Kachhap S, Jha R 2021 J. Lightwave Technol. 39 3974Google Scholar

    [11]

    Wu Y, Yu C B, Wu F, Li C, Zhou J H, Gong Y, Rao Y J, Chen Y F 2017 J. Lightwave Technol. 35 4344Google Scholar

    [12]

    Feng G H, Chen W M 2016 Smart Mater. Struct. 25 055046Google Scholar

    [13]

    Wang S, Lu P, Zhang L, Liu D M, Zhang J S 2014 J. Mod. Opt. 61 1033Google Scholar

    [14]

    Tian J, Zuo Y W, Zhou K M, Yang Q, Hu X, Jiang Y 2024 J. Lightwave Technol. 42 2538Google Scholar

    [15]

    Fu X, Lu P, Ni W J, Liu L, Liao H, Jiang X Y, Liu D M, Zhang J S 2016 IEEE Photonics J. 8 7102811Google Scholar

    [16]

    Yang Q, Tian J, Hu X, Tian J J, He Q Q 2024 Photonics 11 363Google Scholar

    [17]

    Jiang B Q, Bai Z Y, Wang C L, Zhao Y H, Zhao J L, Zhang L, Zhou K M 2018 J. Lightwave Technol. 36 742Google Scholar

    [18]

    Guo M, Chen K, Zhang G Y, Li C X, Zhao X Y, Gong Z F, Yu Q X 2022 J. Lightwave Technol. 40 4481Google Scholar

    [19]

    Ren D P, Liu X, Zhang M Y, Gao R, Qi Z M 2021 IEEE Sens. J. 21 14655Google Scholar

    [20]

    Dass S, Jha R 2017 J. Lightwave Technol. 35 5411Google Scholar

    [21]

    Xiang Z W, Dai W Y, Rao W Y, Cai X, Fu H Y 2021 IEEE Sens. J. 21 17882Google Scholar

    [22]

    Chen J M, Xue C Y, Zheng Y Q, Wu L Y, Chen C, Han Y 2021 Opt. Express 29 16447Google Scholar

    [23]

    Tang P K, Wang P H, Li M L, Lu M S C 2011 J. Micromech. Microeng. 21 025013Google Scholar

    [24]

    Wei H M, Wu Z L, Sun K X, Zhang H Y, Wang C, Wang K M, Yang T, Pang F F, Zhang X B, Wang T Y, Krishnaswamy S 2023 Photonics Res. 11 780Google Scholar

  • 图 1  (a) 传感光纤结构示意图; (b) 传感光纤光谱图

    Fig. 1.  (a) Schematic diagram of optic sensing fiber structure; (b) spectral diagram of sensing fiber.

    图 2  声波传感系统示意图

    Fig. 2.  Schematic diagram of acoustic sensing system.

    图 3  不同频率的频谱响应和时域波形 (a)—(d) 55 Hz, 65 Hz, 75 Hz, 85 Hz时对应的时域信号; (e)—(h) 55 Hz, 65 Hz, 75 Hz, 85 Hz时对应的频域信号

    Fig. 3.  Frequency response and time domain signal at different frequencies: (a)–(d) Time domain signal at 55 Hz, 65 Hz, 75 Hz, 85 Hz; (e)–(h) frequency response at 55 Hz, 65 Hz, 75 Hz, 85 Hz.

    图 4  传感系统对声波频率的频响 (a) 50—220 Hz部分频率的响应频谱图; (b) 35—1000 Hz的信噪比

    Fig. 4.  Frequency response of the sensing system for acoustic wave: (a) The response of frequency spectrum during 50–220 Hz; (b) signal to noise ratio corresponding to different frequencies during 35–1000 Hz.

    图 5  不同频率时传感结构对不同声压的灵敏度线性拟合及重复性测试 (a) 55 Hz; (b) 65 Hz; (c) 75 Hz; (d) 85 Hz

    Fig. 5.  Linearly fitted sensitivities of the sensing structure to different acoustic pressures and repeatability test at (a) 55 Hz, (b) 65 Hz, (c) 75 Hz, (d) 85 Hz.

    表 1  几种声传感方案的性能比较

    Table 1.  Performance comparison of several acoustic sensing systems.

    传感结构 声压响应 信噪比/dB 最小探测声压/(${\text{μPa}}\cdot{\text{Hz}}^{-1/2}$)
    Tapered fiber[20] 36 mV/kPa 46.84 21.11×106@2500 Hz
    Gold diaphragm-based FPI with
    a fiber-optic collimator[21]
    12.6 mV/Pa 51 470@150 Hz
    FP etalon[22] 177.6 mV/Pa 12.7 530@1 kHz
    LPBG[15] 0.064 nm/kPa 40.6 331.9@550 Hz
    CMOS micromachined capacitive[23] 1.35×106@2.4 MHz
    Two-photon 3D printed spring-based
    Fabry-Perot cavity resonator[24]
    0.0883 mV/Vpp 56.2 2390@75 kHz
    本工作 0.0549 mV/Vpp 57.21 267.9@65 Hz
    下载: 导出CSV
  • [1]

    Zhao Y, Chen M Q, Xia F, Lv R Q 2018 Sensor Acoust. A-Phys. 270 162Google Scholar

    [2]

    Shnaiderman R, Wissmeyer G, Seeger M, Soliman D, Estrada H, Razansky D, Rosenthal A, Ntziachristos V 2017 Optica 4 1180Google Scholar

    [3]

    Basiri-Esfahani S, Armin A, Forstner S, Bowen W P 2019 Nat. Commun. 10 132Google Scholar

    [4]

    Mydlarz C, Salamon J, Bello J P 2017 Appl. Acoustics 117 207Google Scholar

    [5]

    Jia J, Jiang Y, Zhang L, Gao H, Jiang L 2019 IEEE Sens. J. 19 7988Google Scholar

    [6]

    刘欣, 蔡宸, 董志飞, 邓欣, 胡昕宇, 祁志美 2022 物理学报 71 094301Google Scholar

    Liu X, Cai C, Dong Z F, Deng X, Hu X Y, Qi Z M 2022 Acta Phys. Sin. 71 094301Google Scholar

    [7]

    Gong Z F, Chen K, Zhou X L, Yang Y, Zhao Z H, Zou H L, Yu Q X 2017 J. Lightwave Technol. 35 5276Google Scholar

    [8]

    Xu Y P, Zhang L, Gao S, Lu P, Mihailov S, Bao X Y 2017 Opt. Lett. 42 1353Google Scholar

    [9]

    Li Y, Tian J J, Fu Q, Sun Y X, Yao Y 2019 J. Lightwave Technol. 37 1160Google Scholar

    [10]

    Dass S, Chatterjee K, Kachhap S, Jha R 2021 J. Lightwave Technol. 39 3974Google Scholar

    [11]

    Wu Y, Yu C B, Wu F, Li C, Zhou J H, Gong Y, Rao Y J, Chen Y F 2017 J. Lightwave Technol. 35 4344Google Scholar

    [12]

    Feng G H, Chen W M 2016 Smart Mater. Struct. 25 055046Google Scholar

    [13]

    Wang S, Lu P, Zhang L, Liu D M, Zhang J S 2014 J. Mod. Opt. 61 1033Google Scholar

    [14]

    Tian J, Zuo Y W, Zhou K M, Yang Q, Hu X, Jiang Y 2024 J. Lightwave Technol. 42 2538Google Scholar

    [15]

    Fu X, Lu P, Ni W J, Liu L, Liao H, Jiang X Y, Liu D M, Zhang J S 2016 IEEE Photonics J. 8 7102811Google Scholar

    [16]

    Yang Q, Tian J, Hu X, Tian J J, He Q Q 2024 Photonics 11 363Google Scholar

    [17]

    Jiang B Q, Bai Z Y, Wang C L, Zhao Y H, Zhao J L, Zhang L, Zhou K M 2018 J. Lightwave Technol. 36 742Google Scholar

    [18]

    Guo M, Chen K, Zhang G Y, Li C X, Zhao X Y, Gong Z F, Yu Q X 2022 J. Lightwave Technol. 40 4481Google Scholar

    [19]

    Ren D P, Liu X, Zhang M Y, Gao R, Qi Z M 2021 IEEE Sens. J. 21 14655Google Scholar

    [20]

    Dass S, Jha R 2017 J. Lightwave Technol. 35 5411Google Scholar

    [21]

    Xiang Z W, Dai W Y, Rao W Y, Cai X, Fu H Y 2021 IEEE Sens. J. 21 17882Google Scholar

    [22]

    Chen J M, Xue C Y, Zheng Y Q, Wu L Y, Chen C, Han Y 2021 Opt. Express 29 16447Google Scholar

    [23]

    Tang P K, Wang P H, Li M L, Lu M S C 2011 J. Micromech. Microeng. 21 025013Google Scholar

    [24]

    Wei H M, Wu Z L, Sun K X, Zhang H Y, Wang C, Wang K M, Yang T, Pang F F, Zhang X B, Wang T Y, Krishnaswamy S 2023 Photonics Res. 11 780Google Scholar

  • [1] 王坤, 段高燕, 郎佩琳, 赵玉芳, 刘尖斌, 宋钢. 基于银纳米链的马赫-曾德干涉仪结构的生物传感器. 物理学报, 2022, 71(1): 017301. doi: 10.7498/aps.71.20211420
    [2] 王帅, 眭永兴, 孟祥国. 光子增加双模压缩真空态在马赫-曾德尔干涉仪相位测量中的应用. 物理学报, 2020, 69(12): 124202. doi: 10.7498/aps.69.20200179
    [3] 刘昱, 任国斌, 靳文星, 吴越, 杨宇光, 简水生. 基于模场自积增强检测的光纤声光旋转传感器. 物理学报, 2018, 67(1): 014208. doi: 10.7498/aps.67.20171525
    [4] 李诗宇, 田剑锋, 杨晨, 左冠华, 张玉驰, 张天才. 探测器对量子增强马赫-曾德尔干涉仪相位测量灵敏度的影响. 物理学报, 2018, 67(23): 234202. doi: 10.7498/aps.67.20181193
    [5] 闫子华, 孙恒信, 蔡春晓, 马龙, 刘奎, 郜江瑞. 基于低频压缩光的声频信号测量. 物理学报, 2017, 66(11): 114205. doi: 10.7498/aps.66.114205
    [6] 董永康, 周登望, 滕雷, 姜桃飞, 陈曦. 布里渊动态光栅原理及其在光纤传感中的应用. 物理学报, 2017, 66(7): 075201. doi: 10.7498/aps.66.075201
    [7] 王闵, 刘复飞, 周贤, 戴玉堂, 杨明红. 基于光纤微结构加工和敏感材料物理融合的光纤传感技术. 物理学报, 2017, 66(7): 070703. doi: 10.7498/aps.66.070703
    [8] 刘铁根, 于哲, 江俊峰, 刘琨, 张学智, 丁振扬, 王双, 胡浩丰, 韩群, 张红霞, 李志宏. 分立式与分布式光纤传感关键技术研究进展. 物理学报, 2017, 66(7): 070705. doi: 10.7498/aps.66.070705
    [9] 何祖源, 刘庆文, 陈嘉庚. 面向地壳形变观测的超高分辨率光纤应变传感系统. 物理学报, 2017, 66(7): 074208. doi: 10.7498/aps.66.074208
    [10] 赵勇, 蔡露, 李雪刚, 吕日清. 基于酒精与磁流体填充的单模-空芯-单模光纤结构温度磁场双参数传感器. 物理学报, 2017, 66(7): 070601. doi: 10.7498/aps.66.070601
    [11] 杨易, 徐贲, 刘亚铭, 李萍, 王东宁, 赵春柳. 基于游标效应的增敏型光纤法布里-珀罗干涉仪温度传感器. 物理学报, 2017, 66(9): 094205. doi: 10.7498/aps.66.094205
    [12] 张克声, 陈刘奎, 欧卫华, 蒋学勤, 龙飞. 基于声吸收谱峰值点的天然气燃烧特性检测理论. 物理学报, 2015, 64(5): 054302. doi: 10.7498/aps.64.054302
    [13] 王婷婷, 葛益娴, 常建华, 柯炜, 王鸣. 基于椭球封闭空气腔的光纤复合法布里-珀罗结构折射率传感特性研究. 物理学报, 2014, 63(24): 240701. doi: 10.7498/aps.63.240701
    [14] 郝辉, 夏巍, 王鸣, 郭冬梅, 倪小琦. 光纤激光器自混合干涉效应研究. 物理学报, 2014, 63(23): 234202. doi: 10.7498/aps.63.234202
    [15] 杨珅, 荣强周, 孙浩, 张菁, 梁磊, 徐琴芳, 詹苏昌, 杜彦英, 冯定一, 乔学光, 忽满利. 基于Michelson干涉仪的高灵敏度光纤高温探针传感器. 物理学报, 2013, 62(8): 084218. doi: 10.7498/aps.62.084218
    [16] 陈伟, 孟洲, 周会娟, 罗洪. 远程干涉型光纤传感系统的非线性相位噪声分析. 物理学报, 2012, 61(18): 184210. doi: 10.7498/aps.61.184210
    [17] 王昌辉, 赵国华, 常胜江. 基于光子晶体马赫-曾德尔干涉仪的太赫兹开关及强度调制器. 物理学报, 2012, 61(15): 157805. doi: 10.7498/aps.61.157805
    [18] 郭文刚, 杨秀峰, 罗绍均, 李勇男, 涂成厚, 吕福云, 王宏杰, 李恩邦, 吕 超. 基于激光瞬态特性的气体浓度光纤传感器. 物理学报, 2007, 56(1): 308-312. doi: 10.7498/aps.56.308
    [19] 朱 涛, 饶云江, 莫秋菊. 基于超长周期光纤光栅的高灵敏度扭曲传感器. 物理学报, 2006, 55(1): 249-253. doi: 10.7498/aps.55.249
    [20] 乔学光, 贾振安, 傅海威, 李 明, 周 红. 光纤光栅温度传感理论与实验. 物理学报, 2004, 53(2): 494-497. doi: 10.7498/aps.53.494
计量
  • 文章访问数:  462
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-23
  • 修回日期:  2025-02-13
  • 上网日期:  2025-03-12

/

返回文章
返回