搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高磁场下7Li原子的d波Feshbach共振

陈钟之 赖海健 齐燃 俞振华

引用本文:
Citation:

高磁场下7Li原子的d波Feshbach共振

陈钟之, 赖海健, 齐燃, 俞振华
cstr: 32037.14.aps.74.20241602

d-wave Feshbach resonance of 7Li atoms in high magnetic fields

CHEN Zhongzhi, LAI Haijian, QI Ran, YU Zhenhua
cstr: 32037.14.aps.74.20241602
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • Feshbach共振是在特定外场下原子间发生共振相互作用的现象, 主要表现为在共振附近量化低能散射性质的广义散射长度随外场趋于发散. 近年来, 随着冷原子物理的发展, s波及高分波的Feshbach共振相继被发现, 为研究共振相互作用在多体物理中的效应提供了宝贵的途径. 本文基于多通道量子缺陷理论(MQDT), 预言在1039.24 和1055.64 G (1 G = 10–4 T)外磁场下, 7Li原子间存在两个d波Feshbach共振, 并确定了共振的各项参数, 如共振宽度等. 同时, 估计了磁偶极矩相互作用对这两个共振的影响. 本文的结果拓展了在7Li原子气体中研究d波共振相互作用的契机.
    Feshbach resonance is a fundamental phenomenon in cold atomic physics, where interatomic interactions can be precisely changed into a scattering resonance by varying an external magnetic field. This effect plays a crucial role in ultracold atomic experiments, enabling the control of interaction strength, the formation of molecular bound states, and the realization of strongly correlated quantum systems. With the rapid development of cold atom experiments, numerous Feshbach resonances corresponding to different partial waves, such as s-wave, p-wave, and even higher partial wave ones, have been experimentally identified. While s-wave resonances have been widely utilized due to their isotropic nature and strong coupling, and higher partial-wave resonances (including p-wave and d-wave resonances), provide unique opportunities for exploring anisotropic interactions and novel quantum phases. In this study, by using the multichannel quantum defect theory (MQDT), we predict that two d-wave Feshbach resonances are existent in 7Li at 1039.24 G and 1055.64 G, repectively. Physical properties of the two resonances are presented, such as the resonance width and closed channel dimer energy. In addition, we optimize the computational parameters by using the Nelder-Mead algorithm and investigate the possible resonance splitting induced by dipole-dipole interactions in higher partial waves. The presence of these d-wave resonances at high magnetic fields provides a new platform for investigating the interplay between higher-order partial wave interactions and quantum many-body effects. Our results provide opportunities for investigating the effects of higher partial wave Feshbach resonances in high magnetic fields. Our theoretical predictions thus serve as a useful reference for future experimental studies of higher-order resonance phenomena in lithium and other atomic species.
      通信作者: 俞振华, huazhenyu2000@gmail.com
    • 基金项目: 国家自然科学基金(批准号: 12474270)资助的课题.
      Corresponding author: YU Zhenhua, huazhenyu2000@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12474270).
    [1]

    Schrödinger E 1926 Annalen der Physik 79 734

    [2]

    Chu S, Bjorkholm J E, Ashkin A, Cable A 1986 Phys. Rev. Lett. 57 314Google Scholar

    [3]

    Phillips W D, Metcalf H 1982 Phys. Rev. Lett. 48 596Google Scholar

    [4]

    Moerdijk A J, Verhaar B J, Axelsson A 1995 Phys. Rev. A 51 4852Google Scholar

    [5]

    Feshbach H 1958 Ann. Phys. 5 357Google Scholar

    [6]

    Yao X C, Qi R, Liu X P, Wang X Q, Wang Y X, Wu Y P, Chen H Z, Zhang P, Zhai H, Chen Y A, Pan J W 2019 Nat. Phys. 15 570Google Scholar

    [7]

    Bartenstein M, Altmeyer A, Riedl S, Geursen R, Jochim S, Chin C, Denschlag J H, Grimm R, Simoni A, Tiesinga E, Williams C J, Julienne P S 2005 Phys. Rev. Lett. 94 103201Google Scholar

    [8]

    Strecker K E, Partridge G B, Hulet R G 2003 Phys. Rev. Lett. 91 080406Google Scholar

    [9]

    Regal C A, Ticknor C, Bohn J L, Jin D S 2003 Phys. Rev. Lett. 90 053201Google Scholar

    [10]

    Zhang R, Yan S, Song H, Guo H, Ning C 2024 Nat. Commun. 15 3858Google Scholar

    [11]

    Schwartz I, Shimazaki Y, Kuhlenkamp C, Watanabe K, Taniguchi T, Kroner M, Imamoğlu A 2021 Science 374 336Google Scholar

    [12]

    Koch J, Menon K, Cuestas E, Barbosa S, Lutz E, Fogarty T, Busch T, Widera A 2023 Nature 621 723Google Scholar

    [13]

    Margulis B, Horn K P, Reich D M, Upadhyay M, Kahn N, Christianen A, van der Avoird A, Groenenboom G C, Meuwly M, Koch C P, Narevicius E 2023 Science 380 77Google Scholar

    [14]

    Yudkin Y, Elbaz R, D’ Incao J P, Julienne P S, Khaykovich L 2024 Nat. Commun. 15 2127Google Scholar

    [15]

    Köhler T, Góral K, Julienne P S 2006 Rev. Mod. Phys. 78 1311Google Scholar

    [16]

    Bruun G M, Pethick C J 2004 Phys. Rev. Lett. 92 140404Google Scholar

    [17]

    Aymar M, Greene C H, Luc-Koenig E 1996 Rev. Mod. Phys. 68 1015Google Scholar

    [18]

    Makrides C, Gao B 2014 Phys. Rev. A 89 062718Google Scholar

    [19]

    Julienne P S, Hutson J M 2014 Phys. Rev. A 89 052715Google Scholar

    [20]

    Stoof H T C, Koelman J M V A, Verhaar B J 1988 Phys. Rev. B 38 4688Google Scholar

    [21]

    Gao B 1998 Phys. Rev. A 58 1728Google Scholar

    [22]

    Cavagnero M J 1994 Phys. Rev. A 50 2841Google Scholar

    [23]

    Gao B 1999 Phys. Rev. A 59 2778Google Scholar

    [24]

    Gao B, Tiesinga E, Williams C J, Julienne P S 2005 Phys. Rev. A 72 042719Google Scholar

    [25]

    Gao B 2008 Phys. Rev. A 78 012702Google Scholar

    [26]

    Gao B 2009 Phys. Rev. A 80 012702Google Scholar

    [27]

    Gao B 2011 Phys. Rev. A 84 022706Google Scholar

    [28]

    Góral K, Köhler T, Gardiner S A, Tiesinga E, Julienne P S 2004 J. Phys. B: At. Mol. Opt. Phys. 37 3457Google Scholar

    [29]

    Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225Google Scholar

    [30]

    Gaebler J P, Stewart J T, Bohn J L, Jin D S 2007 Phys. Rev. Lett. 98 200403Google Scholar

    [31]

    Weckesser P, Thielemann F, Wiater D, Wojciechowska A, Karpa L, Jachymski K, Tomza M, Walker T, Schaetz T 2021 Nature 600 429Google Scholar

    [32]

    Fey C, Schmelcher P, Imamoglu A, Schmidt R 2020 Phys. Rev. B 101 195417Google Scholar

    [33]

    Strecker K E, Partridge G B, Truscott A G, Hulet R G 2002 Nature 417 150Google Scholar

    [34]

    Inouye S, Andrews M, Stenger J, Miesner H J, Stamper-Kurn D M, Ketterle W 1998 Nature 392 151Google Scholar

    [35]

    Lagarias J C, Reeds J A, Wright M H, Wright P E 1998 SIAM J. Optim. 9 112Google Scholar

    [36]

    Pollack S E, Dries D, Junker M, Chen Y P, Corcovilos T A, Hulet R G 2009 Phys. Rev. Lett. 102 090402Google Scholar

  • 图 1  7Li原子内态能量随外磁场的变化($ E_6 \equiv E_{\text{vdW}}/4 $)

    Fig. 1.  Internal state energies of 7Li atoms vs. the external magnetic field B, where $ E_6\equiv E_{\text{vdW}}/4 $.

    图 2  7Li原子d波广义散射长度$ a_2 $在两个共振磁场(a) 1039.24和(b) 1055.64 G附近随磁场的变化. 图中黑色虚线标注出了共振的位置

    Fig. 2.  The d-wave generalized scattering length $ a_2 $ for 7Li atoms vs. the external magnetic field B in the vicinity of two resonances at (a) 1039.24 and (b) 1055.64 G. The black dashed lines represent the resonance points.

    图 3  闭通道中低能束缚态能量$ E_{\mathrm{b}} $在两个共振磁场(a) 1039.24和(b) 1055.64 G附近随磁场的变化. 蓝色点为计算的数据点, 绿色线是线性拟合的数据, 红色虚线标记共振点的位置

    Fig. 3.  Energy $ E_{\mathrm{b}} $ of the low energy bound state in the closed channels vs. the external magnetic field B in the vicinity of the two resonances at (a) 1039.24 and (b) 1055.64 G

    图 4  磁偶极矩相互作用导致的共振点劈裂. 两子图中$ a_2 $发散的磁场从小到大分别对应于$ m = 0 $, $ m = 1 $, 不考虑劈裂, $ m = 2 $的共振点位置

    Fig. 4.  Resonance splittings due to the magnetic dipole-dipole interaction. In the plots the divergences of $ a_2 $ correspond to the resonances of $ m = 0 $, $ m = 1 $, no splitting, and $ m = 2 $ from small B to big B.

    图 B1  三个参数$ a_{\mathrm{s}} $, $ a_{\mathrm{t}} $以及$ C_6 $根据迭代次数的变化

    Fig. B1.  Three parameters $ a_{\mathrm{s}} $, $ a_{\mathrm{t}} $ and $ C_6 $ vs. the number of iterations for optimization.

    图 B2  输出函数$ f(B) $的迭代情况

    Fig. B2.  Iteration behavior of the output function $ f(B) $.

    表 A1  7Li和23Na的Feshbach共振

    Table A1.  Feshbach resonances in 7Li and 23Na.

    元素 入射通道 l $ B_{0} $/G $ a_{0, {\mathrm{bg}}}/\bar a_0 $ Δ/G $ {\text{δ}}\mu/\mu_0 $ $ B_{\mathrm{ext}} $/G 数据来源
    7Li aa s 738.2 –0.6753 –159.9 1.93 736.8 [33]
    23Na aa s 851.04 1.459 0.009674 3.8 853 [34]
    s 908.4 1.434 1.085 3.8 907 [34]
    下载: 导出CSV

    表 1  7Li的d波Feshbach共振

    Table 1.  d-wave Feshbach resonances in 7Li

    B0 /G $ {a}_{2, {\mathrm{bg}}} $/$ \bar a_{2} $ Δ/G $ {\text{δ}}\mu/\mu_0 $ sres ζ
    1039.24 1.529 $ 6.397 \times 10^{-4} $ 3.924 $ 2.19 \times 10^{-4} $ $ 6.49 \times 10^{-11} $
    1055.64 1.529 0.0615 3.953 0.021 $ 6.29 \times 10^{-9} $
    下载: 导出CSV

    表 C1  不同原子的Feshbach共振

    Table C1.  Feshbach resonances in other alkali atoms.

    元素 入射通道 l $ B_{0} $/G $ a_{l, {\mathrm{bg}}}/\bar a_l $ Δ/G
    7Li ab p 977.12 1.1 121.1
    d 72.9 2.63 148.3
    7Li bc p 514.3 –1.235 –61.07
    1083 –1.3 –15.85
    23Na aa d 578.7 –1.179 –0.04575
    656.2 –8.462 –0.1149
    23Na ab s 977.1 1.464 $ 3.689\times 10^{-3} $
    p 880.1 1.753 0.1491
    d 694.3 –1.147 –0.05086
    23Na bc s 1017 –1.152 –0.0523
    下载: 导出CSV
  • [1]

    Schrödinger E 1926 Annalen der Physik 79 734

    [2]

    Chu S, Bjorkholm J E, Ashkin A, Cable A 1986 Phys. Rev. Lett. 57 314Google Scholar

    [3]

    Phillips W D, Metcalf H 1982 Phys. Rev. Lett. 48 596Google Scholar

    [4]

    Moerdijk A J, Verhaar B J, Axelsson A 1995 Phys. Rev. A 51 4852Google Scholar

    [5]

    Feshbach H 1958 Ann. Phys. 5 357Google Scholar

    [6]

    Yao X C, Qi R, Liu X P, Wang X Q, Wang Y X, Wu Y P, Chen H Z, Zhang P, Zhai H, Chen Y A, Pan J W 2019 Nat. Phys. 15 570Google Scholar

    [7]

    Bartenstein M, Altmeyer A, Riedl S, Geursen R, Jochim S, Chin C, Denschlag J H, Grimm R, Simoni A, Tiesinga E, Williams C J, Julienne P S 2005 Phys. Rev. Lett. 94 103201Google Scholar

    [8]

    Strecker K E, Partridge G B, Hulet R G 2003 Phys. Rev. Lett. 91 080406Google Scholar

    [9]

    Regal C A, Ticknor C, Bohn J L, Jin D S 2003 Phys. Rev. Lett. 90 053201Google Scholar

    [10]

    Zhang R, Yan S, Song H, Guo H, Ning C 2024 Nat. Commun. 15 3858Google Scholar

    [11]

    Schwartz I, Shimazaki Y, Kuhlenkamp C, Watanabe K, Taniguchi T, Kroner M, Imamoğlu A 2021 Science 374 336Google Scholar

    [12]

    Koch J, Menon K, Cuestas E, Barbosa S, Lutz E, Fogarty T, Busch T, Widera A 2023 Nature 621 723Google Scholar

    [13]

    Margulis B, Horn K P, Reich D M, Upadhyay M, Kahn N, Christianen A, van der Avoird A, Groenenboom G C, Meuwly M, Koch C P, Narevicius E 2023 Science 380 77Google Scholar

    [14]

    Yudkin Y, Elbaz R, D’ Incao J P, Julienne P S, Khaykovich L 2024 Nat. Commun. 15 2127Google Scholar

    [15]

    Köhler T, Góral K, Julienne P S 2006 Rev. Mod. Phys. 78 1311Google Scholar

    [16]

    Bruun G M, Pethick C J 2004 Phys. Rev. Lett. 92 140404Google Scholar

    [17]

    Aymar M, Greene C H, Luc-Koenig E 1996 Rev. Mod. Phys. 68 1015Google Scholar

    [18]

    Makrides C, Gao B 2014 Phys. Rev. A 89 062718Google Scholar

    [19]

    Julienne P S, Hutson J M 2014 Phys. Rev. A 89 052715Google Scholar

    [20]

    Stoof H T C, Koelman J M V A, Verhaar B J 1988 Phys. Rev. B 38 4688Google Scholar

    [21]

    Gao B 1998 Phys. Rev. A 58 1728Google Scholar

    [22]

    Cavagnero M J 1994 Phys. Rev. A 50 2841Google Scholar

    [23]

    Gao B 1999 Phys. Rev. A 59 2778Google Scholar

    [24]

    Gao B, Tiesinga E, Williams C J, Julienne P S 2005 Phys. Rev. A 72 042719Google Scholar

    [25]

    Gao B 2008 Phys. Rev. A 78 012702Google Scholar

    [26]

    Gao B 2009 Phys. Rev. A 80 012702Google Scholar

    [27]

    Gao B 2011 Phys. Rev. A 84 022706Google Scholar

    [28]

    Góral K, Köhler T, Gardiner S A, Tiesinga E, Julienne P S 2004 J. Phys. B: At. Mol. Opt. Phys. 37 3457Google Scholar

    [29]

    Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225Google Scholar

    [30]

    Gaebler J P, Stewart J T, Bohn J L, Jin D S 2007 Phys. Rev. Lett. 98 200403Google Scholar

    [31]

    Weckesser P, Thielemann F, Wiater D, Wojciechowska A, Karpa L, Jachymski K, Tomza M, Walker T, Schaetz T 2021 Nature 600 429Google Scholar

    [32]

    Fey C, Schmelcher P, Imamoglu A, Schmidt R 2020 Phys. Rev. B 101 195417Google Scholar

    [33]

    Strecker K E, Partridge G B, Truscott A G, Hulet R G 2002 Nature 417 150Google Scholar

    [34]

    Inouye S, Andrews M, Stenger J, Miesner H J, Stamper-Kurn D M, Ketterle W 1998 Nature 392 151Google Scholar

    [35]

    Lagarias J C, Reeds J A, Wright M H, Wright P E 1998 SIAM J. Optim. 9 112Google Scholar

    [36]

    Pollack S E, Dries D, Junker M, Chen Y P, Corcovilos T A, Hulet R G 2009 Phys. Rev. Lett. 102 090402Google Scholar

  • [1] 刘雪梅, 芮扬, 张亮, 武跃龙, 武海斌. 用于冷原子的高精度磁场锁定系统. 物理学报, 2022, 71(14): 145205. doi: 10.7498/aps.71.20220399
    [2] 白净, 谢廷. 利用重归一化Numerov方法研究超冷双原子碰撞. 物理学报, 2022, 71(3): 033401. doi: 10.7498/aps.71.20211308
    [3] 肖士妍, 贾大功, 聂安然, 余辉, 吉喆, 张红霞, 刘铁根. 开放式多通道多芯少模光纤表面等离子体共振生物传感器. 物理学报, 2020, 69(13): 137802. doi: 10.7498/aps.69.20200353
    [4] 石悦然, 卢倬成, 王璟琨, 张威. 轨道Feshbach共振附近类碱土金属原子的杂质态问题. 物理学报, 2019, 68(4): 040305. doi: 10.7498/aps.68.20181937
    [5] 刁鹏鹏, 邓书金, 李芳, 武海斌. 超冷费米气体的膨胀动力学研究新进展. 物理学报, 2019, 68(4): 046702. doi: 10.7498/aps.68.20182293
    [6] 王丹丹, 李志坚. 一维相位缺陷量子行走的共振传输. 物理学报, 2016, 65(6): 060301. doi: 10.7498/aps.65.060301
    [7] 李俊, 崔江煜, 杨晓东, 罗智煌, 潘健, 余琦, 李兆凯, 彭新华, 杜江峰. 核磁共振中的量子控制. 物理学报, 2015, 64(16): 167601. doi: 10.7498/aps.64.167601
    [8] 王菊霞. 二能级原子与多模光场简并多光子共振相互作用系统中量子保真度的演化特性. 物理学报, 2014, 63(18): 184203. doi: 10.7498/aps.63.184203
    [9] 程聪, 吴福根, 张欣, 姚源卫. 基于局域共振单元实现声子晶体低频多通道滤波. 物理学报, 2014, 63(2): 024301. doi: 10.7498/aps.63.024301
    [10] 叶伏秋, 李科敏, 彭小芳. 低温下多通道量子结构中的弹性声子输运和热导. 物理学报, 2011, 60(3): 036806. doi: 10.7498/aps.60.036806
    [11] 武宏宇, 尹 澜. 超流费米气体相滑移时的密度分布. 物理学报, 2006, 55(2): 490-493. doi: 10.7498/aps.55.490
    [12] 袁青山, 陈鸿, 章豫梅. 多通道共振能级模型的费密与非费密液体行为. 物理学报, 1996, 45(11): 1865-1874. doi: 10.7498/aps.45.1865
    [13] 董顺乐, 梅良模. 分子多光子共振吸收的理论研究. 物理学报, 1993, 42(7): 1074-1078. doi: 10.7498/aps.42.1074
    [14] 杨力. 一价铝离子能级结构的多通道量子亏损理论分析. 物理学报, 1991, 40(12): 1897-1903. doi: 10.7498/aps.40.1897
    [15] 梁良, 王永昌, 刘学文. GaII能谱的多通道量子数亏损理论(MQDT)分析. 物理学报, 1990, 39(6): 11-18. doi: 10.7498/aps.39.11
    [16] 杨力, 赵伊君, 张志杰. Al Ⅱ1P10序列能级结构的多通道量子亏损理论分析. 物理学报, 1988, 37(8): 1341-1344. doi: 10.7498/aps.37.1341
    [17] 马锦秀, 徐至展. 共振自聚焦理论. 物理学报, 1987, 36(1): 1-9. doi: 10.7498/aps.36.1
    [18] 李家明. 双电子复合逆过程的多通道理论. 物理学报, 1983, 32(1): 84-91. doi: 10.7498/aps.32.84
    [19] 赵钧. AlI原子2D吸收谱的多通道量子数亏损理论分析. 物理学报, 1982, 31(12): 28-36. doi: 10.7498/aps.31.28
    [20] 杨棨. 铁磁共振的量子理论——各向同性铁氧体的共振条件. 物理学报, 1963, 19(3): 139-150. doi: 10.7498/aps.19.139
计量
  • 文章访问数:  307
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-16
  • 修回日期:  2025-02-10
  • 上网日期:  2025-03-07

/

返回文章
返回