搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维相位缺陷量子行走的共振传输

王丹丹 李志坚

引用本文:
Citation:

一维相位缺陷量子行走的共振传输

王丹丹, 李志坚

Resonance transmission of one-dimensional quantum walk with phase defects

Wang Dan-Dan, Li Zhi-Jian
PDF
导出引用
  • 从分立时间量子行走理论出发, 分别在包含两个格点相位缺陷和一段格点相位缺陷(方相位势)的一维格点线上研究量子行走的静态共振传输. 利用系统独特的色散关系和边界点上的能量守恒条件, 获得量子行走通过缺陷区域的透射率, 讨论了相位缺陷的强度和宽度不同时透射率随入射动量的变化行为. 在相位缺陷强度/2两侧, 透射率表现出不同的共振特性, 并给出了强缺陷强度下共振峰和缺陷宽度的关系.
    In this paper, the resonance transmission of discrete time quantum walk is studied when it walks on one-dimensional lattice in which two-phase defects or a piece of phase defects exists. The quasi energy of discrete time quantum walk has a unique dispersion relation with the momentum, from which we first discuss the wave velocity direction versus the values of momentum, and distinguish the incident wave and the reflected wave. The gap between two energy bands depends on the parameters of coincident operator, so the phase defects, which break down the translation invariance of quantum walk on uniform lattices, can be regarded as an analogue of quantum potential. Then we use the condition of energy conversion at the boundary points to obtain the transmission rate and discuss its variation with the incident momentum for different strengths and widths of defects in detail. The multiple resonant peaks are observed due to the enhanced interference effect. Different resonant behaviors are shown when the strength of defect is less or greater than /2, correspondingly the resonances occur in a wide region of incident momentum or the sharp resonant peaks appear at discrete values of momentum. Under the condition of strong defect strength, i.e., approaching to , the qualitative relation between the number of resonant peaks and the widths of defect region is given. The number of resonant peaks is 2(N-1) when the two phase defects are located at N sites symmetric about the origin, while the number is 2N when a piece of phase defects is located at -N to N sites. In the case of a piece of phase defects, we also present the phase diagram in parameter space of (k, ) to show the discrete time of quantum walk propagating or tunneling through the defect region. In terms of this phase diagram, the variations of transmission rate with the incident momentum are reasonably explained. One special phenomenon is that the quantum walk is almost totally reflected in the tunneling case except for =/2 and k being slightly off -/2. Moreover, this behavior seems little affecting the defect strength, just similar to a classical particle. As a result of this research, we hope to deepen the insight of the quantum walk and provide methods to control the spreading of quantum walk through artificial defects.
      通信作者: 李志坚, zjli@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 10974124, 11274208)和山西省回国留学人员科研资助项目(批准号: 2015-012)资助的课题.
      Corresponding author: Li Zhi-Jian, zjli@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974124, 11274208) and the Shanxi Scholarship Council of China (2015-012).
    [1]

    Kempe J 2003 Contemp. Phys. 44 307

    [2]

    Zaburdaev V, Denisov S, Klafter J 2015 Rev. Mod. Phys. 87 483

    [3]

    Ambainis A 2003 Int. J. Quantum Inf. 01 507

    [4]

    Shenvi N, Kempe J, Whaley K B 2003 Phys. Rev. A 67 052307

    [5]

    Lovett N B, Cooper S, Everitt M, Trevers M, Kendon V 2010 Phys. Rev. A 81 042330

    [6]

    Kurzyński P, Wjcik A 2011 Phys. Rev. A 83 062315

    [7]

    Plenio M B, Huelga S F 2008 New J. Phys. 10 113019

    [8]

    Schmitz H, Matjeschk R, Schneider Ch, Glueckert J, Enderlein M, Huber T, Schaetz T 2009 Phys. Rev. Lett. 103 090504

    [9]

    Du J F, Li H, Xu X D, Shi M J, Wu J H, Zhou X Y, Han R D 2003 Phys. Rev. A 67 042316

    [10]

    Karski M, Frster L, Choi J M, Steffen A, Alt W, Meschede D, Widera A 2009 Science 325(5937) 174

    [11]

    Bouwmeester D, Marzoli I, Karman G P, Schleich W, Woerdman J P 1999 Phys. Rev. A 61 013410

    [12]

    Xue P, Qin H, Tang B, Zhan X, Bian Z H, Li J 2014 Chin. Phys. B 23 110307

    [13]

    Schreiber A, Gbris A, Rohde P P, Laiho K, tefaňk M, Potoček V, Hamilton C, Jex I, Silberhorn C 2012 Science 336 55

    [14]

    Poulios K, Keil R, Fry D, Meinecke J D A, Matthews J C F, Politi A, Lobino M, Grfe M, Heinrich M, Nolte S, Szameit A, O'Brien J L 2013 Phys. Rev. Lett. 112(14) 143604

    [15]

    Farhi E, Gutmann S 1998 Phys. Rev. A 58 915

    [16]

    Aharonov Y, Davidovich L, Zagury N 1993 Phys. Rev. A 48 1687

    [17]

    Strauch F W 2006 Phys. Rev. A 74 030301(R)

    [18]

    Chandrashekar C M 2013 Sci. Rep. 3 2829

    [19]

    Yin Y, Katsanos D E, Evangelou S N 2008 Phys. Rev. A 77 022302

    [20]

    Trm P, Jex I, Schleich W P 2002 Phys. Rev. A 65 052110

    [21]

    Schreiber A, Cassemiro K N, Potoek V, Gbris A, Jex I, Silberhorn Ch 2011 Phys. Rev. Lett. 106 180403

    [22]

    Chou C I, Ho C L 2014 Chin. Phys. B 23 110302

    [23]

    Zhang R, Qin H, Tang B, Xue P 2013 Chin. Phys. B 22 110312

    [24]

    Li Z J, Izaac J A, Wang J B 2013 Phys. Rev. A 87 012314

    [25]

    Mohseni M, Rebentrost P, Lloyd S, Aspuru-Guzik A 2008 J. Chem. Phys. 129 174106

    [26]

    Marais A, Sinayskiy I, Kay A, Pentruccione F, Ekert A 2013 New J. Phys. 15 013038

    [27]

    Anderson P W 1958 Phys. Rev. 109 1492

    [28]

    Ribeiro P, Milman P, Mosseri R 2004 Phys. Rev. Lett. 93 190503

    [29]

    Keating J P, Linden N, Matthews J C F, Winter A 2007 Phys. Rev. A 76 012315

    [30]

    Joye A, Merkli M 2010 J. Stat. Phys. 140 1025

    [31]

    Ahlbrecht A, Alberti A, Meschede D, Scholz V B, Werner A H, Werner R F 2012 New J. Phys. 14 073050

    [32]

    Kitagawa T, Rudner M S, Berg E, Demler E 2010 Phys. Rev. A 82 033429

    [33]

    Rakovszky T, Asboth J K 2015 Phys. Rev. A 92 052311

    [34]

    Asbth J K, Obuse H 2013 Phys. Rev. B 88 121406(R)

    [35]

    Wjcik A, Łuczak T, Kurzyński P, Grudka A, Gdala T, Bednarska-Bzdęga M 2012 Phys. Rev. A 85 012329

    [36]

    Izaac J A, Wang J B, Li Z J 2013 Phys. Rev. A 88 042334

    [37]

    Zhang R, Xue P, Twamley J 2014 Phys. Rev. A 89 042317

    [38]

    Li Z J, Wang J B 2015 Sci. Rep. 5 13585

    [39]

    Lam H T, Szeto K Y 2015 Phys. Rev. A 92 012323

    [40]

    Li Z J, Wang J B 2015 J. Phys. A: Math. Theor. 48 355301

  • [1]

    Kempe J 2003 Contemp. Phys. 44 307

    [2]

    Zaburdaev V, Denisov S, Klafter J 2015 Rev. Mod. Phys. 87 483

    [3]

    Ambainis A 2003 Int. J. Quantum Inf. 01 507

    [4]

    Shenvi N, Kempe J, Whaley K B 2003 Phys. Rev. A 67 052307

    [5]

    Lovett N B, Cooper S, Everitt M, Trevers M, Kendon V 2010 Phys. Rev. A 81 042330

    [6]

    Kurzyński P, Wjcik A 2011 Phys. Rev. A 83 062315

    [7]

    Plenio M B, Huelga S F 2008 New J. Phys. 10 113019

    [8]

    Schmitz H, Matjeschk R, Schneider Ch, Glueckert J, Enderlein M, Huber T, Schaetz T 2009 Phys. Rev. Lett. 103 090504

    [9]

    Du J F, Li H, Xu X D, Shi M J, Wu J H, Zhou X Y, Han R D 2003 Phys. Rev. A 67 042316

    [10]

    Karski M, Frster L, Choi J M, Steffen A, Alt W, Meschede D, Widera A 2009 Science 325(5937) 174

    [11]

    Bouwmeester D, Marzoli I, Karman G P, Schleich W, Woerdman J P 1999 Phys. Rev. A 61 013410

    [12]

    Xue P, Qin H, Tang B, Zhan X, Bian Z H, Li J 2014 Chin. Phys. B 23 110307

    [13]

    Schreiber A, Gbris A, Rohde P P, Laiho K, tefaňk M, Potoček V, Hamilton C, Jex I, Silberhorn C 2012 Science 336 55

    [14]

    Poulios K, Keil R, Fry D, Meinecke J D A, Matthews J C F, Politi A, Lobino M, Grfe M, Heinrich M, Nolte S, Szameit A, O'Brien J L 2013 Phys. Rev. Lett. 112(14) 143604

    [15]

    Farhi E, Gutmann S 1998 Phys. Rev. A 58 915

    [16]

    Aharonov Y, Davidovich L, Zagury N 1993 Phys. Rev. A 48 1687

    [17]

    Strauch F W 2006 Phys. Rev. A 74 030301(R)

    [18]

    Chandrashekar C M 2013 Sci. Rep. 3 2829

    [19]

    Yin Y, Katsanos D E, Evangelou S N 2008 Phys. Rev. A 77 022302

    [20]

    Trm P, Jex I, Schleich W P 2002 Phys. Rev. A 65 052110

    [21]

    Schreiber A, Cassemiro K N, Potoek V, Gbris A, Jex I, Silberhorn Ch 2011 Phys. Rev. Lett. 106 180403

    [22]

    Chou C I, Ho C L 2014 Chin. Phys. B 23 110302

    [23]

    Zhang R, Qin H, Tang B, Xue P 2013 Chin. Phys. B 22 110312

    [24]

    Li Z J, Izaac J A, Wang J B 2013 Phys. Rev. A 87 012314

    [25]

    Mohseni M, Rebentrost P, Lloyd S, Aspuru-Guzik A 2008 J. Chem. Phys. 129 174106

    [26]

    Marais A, Sinayskiy I, Kay A, Pentruccione F, Ekert A 2013 New J. Phys. 15 013038

    [27]

    Anderson P W 1958 Phys. Rev. 109 1492

    [28]

    Ribeiro P, Milman P, Mosseri R 2004 Phys. Rev. Lett. 93 190503

    [29]

    Keating J P, Linden N, Matthews J C F, Winter A 2007 Phys. Rev. A 76 012315

    [30]

    Joye A, Merkli M 2010 J. Stat. Phys. 140 1025

    [31]

    Ahlbrecht A, Alberti A, Meschede D, Scholz V B, Werner A H, Werner R F 2012 New J. Phys. 14 073050

    [32]

    Kitagawa T, Rudner M S, Berg E, Demler E 2010 Phys. Rev. A 82 033429

    [33]

    Rakovszky T, Asboth J K 2015 Phys. Rev. A 92 052311

    [34]

    Asbth J K, Obuse H 2013 Phys. Rev. B 88 121406(R)

    [35]

    Wjcik A, Łuczak T, Kurzyński P, Grudka A, Gdala T, Bednarska-Bzdęga M 2012 Phys. Rev. A 85 012329

    [36]

    Izaac J A, Wang J B, Li Z J 2013 Phys. Rev. A 88 042334

    [37]

    Zhang R, Xue P, Twamley J 2014 Phys. Rev. A 89 042317

    [38]

    Li Z J, Wang J B 2015 Sci. Rep. 5 13585

    [39]

    Lam H T, Szeto K Y 2015 Phys. Rev. A 92 012323

    [40]

    Li Z J, Wang J B 2015 J. Phys. A: Math. Theor. 48 355301

  • [1] 李艳. 粒子间长程相互作用以及晶格中孤立缺陷点对两硬核玻色子在一维晶格势阱中量子行走的影响. 物理学报, 2023, 72(17): 170501. doi: 10.7498/aps.72.20230642
    [2] 刘瀚扬, 华南, 王一诺, 梁俊卿, 马鸿洋. 基于量子随机行走和多维混沌的三维图像加密算法. 物理学报, 2022, 71(17): 170303. doi: 10.7498/aps.71.20220466
    [3] 周文豪, 王耀, 翁文康, 金贤敏. 集成光量子计算的研究进展. 物理学报, 2022, 71(24): 240302. doi: 10.7498/aps.71.20221782
    [4] 姜瑶瑶, 张文彬, 初鹏程, 马鸿洋. 基于置换群的多粒子环上量子行走的反馈搜索算法. 物理学报, 2022, 71(3): 030201. doi: 10.7498/aps.71.20211000
    [5] 王一诺, 宋昭阳, 马玉林, 华南, 马鸿洋. 基于DNA编码与交替量子随机行走的彩色图像加密算法. 物理学报, 2021, 70(23): 230302. doi: 10.7498/aps.70.20211255
    [6] 宋跃辉, 周煜东, 王玉峰, 李仕春, 高飞, 李博, 华灯鑫. 水云增长过程中的云滴谱及散射特性分析. 物理学报, 2018, 67(24): 249201. doi: 10.7498/aps.67.20181544
    [7] 刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊. 相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响. 物理学报, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [8] 安志云, 李志坚. 逾渗分立时间量子行走的传输及纠缠特性. 物理学报, 2017, 66(13): 130303. doi: 10.7498/aps.66.130303
    [9] 胡帅, 高太长, 李浩, 杨波, 江志东, 陈鸣, 李书磊. 基于时域多分辨算法的非球形气溶胶散射特性仿真模拟. 物理学报, 2017, 66(4): 044207. doi: 10.7498/aps.66.044207
    [10] 薛希玲, 陈汉武, 刘志昊, 章彬彬. 基于散射量子行走的完全图上结构异常搜索算法. 物理学报, 2016, 65(8): 080302. doi: 10.7498/aps.65.080302
    [11] 王文娟, 童培庆. 广义Fibonacci时间准周期量子行走波包扩散的动力学特性. 物理学报, 2016, 65(16): 160501. doi: 10.7498/aps.65.160501
    [12] 宋洪胜, 刘桂媛, 张宁玉, 庄桥, 程传福. 大散射角散斑场中有关相位奇异新特性的研究. 物理学报, 2015, 64(8): 084210. doi: 10.7498/aps.64.084210
    [13] 陈汉武, 李科, 赵生妹. 基于相位匹配的量子行走搜索算法及电路实现. 物理学报, 2015, 64(24): 240301. doi: 10.7498/aps.64.240301
    [14] 刘艳梅, 陈汉武, 刘志昊, 薛希玲, 朱皖宁. 星图上的散射量子行走搜索算法. 物理学报, 2015, 64(1): 010301. doi: 10.7498/aps.64.010301
    [15] 李雪萍, 纪奕才, 卢伟, 方广有. 车载探地雷达信号在分层介质中的散射特性. 物理学报, 2014, 63(4): 044201. doi: 10.7498/aps.63.044201
    [16] 朱元庆, 曲兴华, 张福民, 陶会荣. 实际加工表面红外激光散射特性的实验研究. 物理学报, 2013, 62(24): 244201. doi: 10.7498/aps.62.244201
    [17] 任春年, 史鹏, 刘凯, 李文东, 赵洁, 顾永建. 初态对光波导阵列中连续量子行走影响的研究. 物理学报, 2013, 62(9): 090301. doi: 10.7498/aps.62.090301
    [18] 范萌, 陈良富, 李莘莘, 陶金花, 苏林, 邹铭敏, 张莹, 韩冬. 非球形气溶胶粒子短波红外散射特性研究. 物理学报, 2012, 61(20): 204202. doi: 10.7498/aps.61.204202
    [19] 刘曼, 程传福, 宋洪胜, 滕树云, 刘桂媛. 高斯相关随机表面光散射散斑场相位奇异及其特性的理论研究. 物理学报, 2009, 58(8): 5376-5384. doi: 10.7498/aps.58.5376
    [20] 高飞, 山田亮子, 渡边光男, 刘华锋. 应用蒙特卡罗模拟进行正电子发射断层成像仪散射特性分析. 物理学报, 2009, 58(5): 3584-3591. doi: 10.7498/aps.58.3584
计量
  • 文章访问数:  5321
  • PDF下载量:  251
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-08
  • 修回日期:  2015-12-27
  • 刊出日期:  2016-03-05

/

返回文章
返回