搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于冷原子的高精度磁场锁定系统

刘雪梅 芮扬 张亮 武跃龙 武海斌

引用本文:
Citation:

用于冷原子的高精度磁场锁定系统

刘雪梅, 芮扬, 张亮, 武跃龙, 武海斌

High-precision magnetic field locking system for cold atoms

Liu Xue-Mei, Rui Yang, Zhang Liang, Wu Yue-Long, Wu Hai-Bin
PDF
HTML
导出引用
  • 磁场调控的Feshbach共振是调控原子间相互作用最常用的基本工具, 减小磁场起伏, 对于提高超冷原子散射共振的稳定性有着重要意义. 本文通过一套分流磁场锁定系统, 实现了百高斯磁场下相对不确定度为106量级的磁场锁定, 相较于未经锁定时, 低频电流噪声得到45 dB以上的抑制. 利用本文的锁定方法, 6Li原子团Rabi振荡相干时间提高了9.6倍, 有效延长了超冷原子系统的相干时间. 同时根据原子的Raman损耗谱标定了磁场均方根噪声, 通过选择无相互作用的528 Gs (1 Gs = 10–4 T)处进行检测, 磁场均方根噪声抑制到1.2 mGs, 相较于未经锁定时, 磁场均方根噪声降低16倍, 磁场锁定相对不确定度为$2.27 \times 10^{-6}$. 这样的磁场锁定系统, 可以为超冷原子气体提供精确稳定的背景磁场, 对延长量子存储寿命、精确调控原子散射、开展凝聚态物理模拟等超冷量子气体实验有重要意义.
    In ultracold atomic experiments, evaporative cooling is usually achieved by using Feshbach resonance magnetic fields on the order of Gauss to hundreds of Gausses. The frequency of resonant transition induced by the optical field or radiofrequency is directly affected by the stability of the quantum axis. For example, the phase between two linearly independent vectors of a qubit is affected by the magnetic field noise. Based on the Feshbach resonance technique, magnetic field regulation has become a basic tool to control the interaction between atoms. Narrow Feshbach resonance shows unique advantages in high-temperature superconducting, superfluidity, neutron star state simulation, etc. However, since its resonance width and Fermi energy can be compared with each other, the scattering characteristics are greatly disturbed by the magnetic field. Therefore, a stable and uniform magnetic field is a prerequisite for studying the narrow Feshbach resonances. In experiment, Helmholtz coils are usually used to provide the magnetic field for cold atomic gas, and the magnetic field noise is generally determined by the coil current noise and other magnetic field noises of the environment. However, there are relatively few researches of the high-precision control of large magnetic fields above hundreds of Gausses. With a larger coil current required, the coil current noise contributes more to the magnetic field noise, thus high-precision control of large magnetic fields is still challenging. In this paper, a magnetic field locking system is used to realize a $2.27 \times 10^{-6} $ level locking of the Feshbach magnetic field. A feedback locking system is used to achieve the stability by shunting the magnetic field coil current noise. Compared with the non-locked magnetic field, the low-frequency current noise is suppressed by more than 45 dB. To assess the stability of the actual magnetic field at the atoms, the Rabi oscillation is measured, the coherence time increases nearly 9.6 times, which effectively improves the stability of the ultracold atomic system. Furthermore, we measure the atom number fluctuation at the Gaussian inflection point of the loss spectrum under different Raman pulse widths to evaluate the noise of the magnetic field. Roman pulse duration up to a 24 μs is used to increase the sensitivity of atom number fluctuation in loss spectrum relative to magnetic field noise, of which the root mean square (RMS) noise is suppressed from 20.66 mGs to 1.2 mGs, a 16-fold reduction of the noise is obtained. Such a magnetic field locking system can provide an accurate and stable background magnetic field for ultracold atomic gases, which is of great significance for extending quantum storage time, precisely controlling atomic scattering, and simulating of condensed matter and other ultracold quantum gas in experiment.
      通信作者: 武跃龙, ylwu@lps.ecnu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0304201)、国家自然科学基金(批准号: 11925401, 11734008, 12074125)、上海市优秀学术带头人(批准号: 17XD1401500)和上海市基础研究重大研究计划(批准号: 17JC1400500)资助的课题
      Corresponding author: Wu Yue-Long, ylwu@lps.ecnu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0304201), the National Natural Science Foundation of China (Grant Nos. 11925401, 11734008, 12074125), the Program of Shanghai Subject Chief Scientist, China (Grant No. 17XD1401500), and the Major Research Plan of Basic Research of Shanghai, China (Grant No. 17JC1400500)
    [1]

    Xu Z, Wu Y, Tian L, Chen L, Zhang Z, Yan Z, Li S, Wang H, Xie C, Peng K 2013 Phys. Rev. Lett. 111 240503Google Scholar

    [2]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar

    [3]

    Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar

    [4]

    Georgescu I M, Ashhab S, Nori F 2014 Rev. Mod. Phys. 86 153Google Scholar

    [5]

    杨荣国, 张超霞, 李妮, 张静, 郜江瑞 2019 物理学报 68 094205Google Scholar

    Yang R G, Zhang C X, Li N, Zhang J, Gao J R 2019 Acta Phys. Sin. 68 094205Google Scholar

    [6]

    Jing J, Zhang J, Yan Y, Zhao F, Xie C, Peng K 2003 Phys. Rev. Lett. 90 167903Google Scholar

    [7]

    Riedl S, Lettner M, Vo C, Baur S, Rempe G, Durr S 2012 Phys. Rev. A 85 022318Google Scholar

    [8]

    Szwer D J, Webster S C, Steane A M, Lucas D M 2011 J. Phys. B: At. Mol. Opt. Phys. 44 025501Google Scholar

    [9]

    De Lange G, Wang Z H, Ristè D, Dobrovitski V V, Hanson R 2010 Science 330 60Google Scholar

    [10]

    Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225Google Scholar

    [11]

    Bruun G M 2004 Phys. Rev. A. 70 053602Google Scholar

    [12]

    Hazlett E L, Zhang Y, Stites R W, O’Hara K M 2012 Phys. Rev. Lett. 108 045304Google Scholar

    [13]

    Jagannathan A, Arunkumar N, Joseph J A, Thomas J E 2016 Phys. Rev. Lett. 116 075301Google Scholar

    [14]

    Deng S J, Shi Z Y, Diao P P, Yu Q L, Zhai H, Qi R, Wu H B 2016 Science 353 371Google Scholar

    [15]

    Deng S J, Diao P P, Yu Q L, Wu H B 2015 Chin. Phys. Lett. 32 053401Google Scholar

    [16]

    Ruster T, Schmiegelow C T, Kaufmann H, Warschburger C, Schmidt-Kaler F, Poschinger U G 2016 Appl. Phys. B 122 254

    [17]

    Brandl M F, van Mourik M W, Postler L, Nolf A, Lakhmanskiy K, Paiva R R, Moller S, Daniilidis N, Haffner H, Kaushal V, Ruster T, Warschburger C, Kaufmann H, Poschinger U G, Schmidt-Kaler F, Schindler P, Monz T, Blatt R 2016 Rev. Sci. Instrum. 87 113103Google Scholar

    [18]

    Lamporesi G, Donadello S, Serafini S, Ferrari G 2013 Rev. Sci. Instrum. 84 063102Google Scholar

    [19]

    Farolfi A, Trypogeorgos D, Colzi G, Fava E, Lamporesi G, Ferrari G 2019 Rev. Sci. Instrum. 90 115114Google Scholar

    [20]

    Kornack T W, Smullin S J, Lee S K, Romalis M V 2007 Appl. Phys. Lett. 90 223501Google Scholar

    [21]

    Tayler M C D, Theis T, Sjolander T F, Blanchard J W, Kentner A, Pustelny S, Pines A, Budker D 2017 Rev. Sci. Instrum. 88 091101Google Scholar

    [22]

    Burt E A, Ekstrom C R 2002 Rev. Sci. Instrum. 73 2699Google Scholar

    [23]

    Kubelka-Lange A, Herrmann S, Grosse J, Lammerzahl C, Rasel E M, Braxmaier C 2016 Rev. Sci. Instrum. 87 063101Google Scholar

    [24]

    Shilmi K 2013 Ph.D. Dissertation (Israel: Weizmann Institute Of Science)

    [25]

    Dedman C J, Dall R G, Byron L J, Truscott A G 2007 Rev. Sci. Instrum. 78 024703Google Scholar

    [26]

    Merkel B, Thirumalai K, Tarlton J E, Schafer V M, Ballance C J, Harty T P, Lucas D M 2019 Rev. Sci. Instrum. 90 044702Google Scholar

    [27]

    Tarlton J E 2018 Ph.D. Dissertation (Ann Arbor: Imperial College London )

    [28]

    Xu X T, Wang Z Y, Jiao R H, Yi C R, Sun W, Chen S 2019 Rev. Sci. Instrum. 90 054708Google Scholar

    [29]

    Yang Y M, Xie H T, Ji W C, Wang Y F, Zhang W Y, Chen S, Jiang X 2019 Rev. Sci. Instrum. 90 014701Google Scholar

    [30]

    Wang J, She S, Zhang S 2002 Rev. Sci. Instrum. 73 2175Google Scholar

    [31]

    Botti L, Buffa R, Bertoldi A, Bassi D, Ricci L 2006 Rev. Sci. Instrum. 77 035103Google Scholar

    [32]

    Zhang X, Chen Y, Wu Z, Wang J, Fan J, Deng S, Wu H 2021 Science 373 1359Google Scholar

    [33]

    俞千里, 邓书金, 刁鹏鹏, 李芳, 尉石, 武海斌 2017 量子光学学报 23 254

    Yu Q L, Deng S J, Diao P P, Li F, Yu s, Wu H B 2017 J. Quantum Opt. 23 254

    [34]

    Li R, Wu Y L, Rui Y, Li B, Jiang Y Y, Ma L S, Wu H B 2020 Phys. Rev. Lett. 124 063002Google Scholar

    [35]

    Claudon J, Zazunov A, Hekking F W J, Buisson O 2008 Phys. Rev. B 78 184503Google Scholar

  • 图 1  (a)磁场锁定系统. 图中电源输出为恒流模式, 线圈与分流支路并联, 电流传感器测量通过线圈的电流, 并通过锁定电路控制$I_{\rm{noise}}$的大小. (b)信号处理流程图. 线圈电流$I_{\rm{coils}}$通过电流探测器($\times {1}/{2000}$)、10 Ω采样电阻($\times\;10$)后, 再经过与粗调、细调参考电压作差放大($\times \;200$), 获得误差信号$V_{\rm{error}}$, 对误差信号进行滤波、补偿处理后, 再积分并选择合适的反馈带宽, 最终获得控制电压$V_{\rm{noise}}$

    Fig. 1.  (a) Magnetic locking system. The power supply runs in constant-current mode. The coil is in parallel with the $I_{\rm{noise}}$. The current sensor measures the current passing through the coil and controls the $I_{\rm{noise}}$ through the magnetic field stabilization circuit. (b) Block diagram of the locking circuit. After the coil current $I_{\rm{coils}}$ passes through the current detector with a conversion ratio of 1∶2000, the signal is reduced by 2000 times, and then amplified by 10 times through the 10 Ω sampling resistor, and then amplified by 200 times after the difference with the reference voltage for coarse adjustment and fine adjustment. After filtering and compensating the error signal, the gain is obtained through the integrating circuit and the bandwidth is defined to obtain the control voltage.

    图 2  锁定前后误差信号波形图. 红色为有磁场锁定时的误差信号, 蓝色为没有磁场锁定时的误差信号

    Fig. 2.  Error signal waveform. Red is the error signal measured when the magnetic field is stable, and blue is the error signal obtained when the magnetic field is locked

    图 3  误差信号的功率谱密度. 红色为锁定后误差信号的功率谱密度, 蓝线为锁定前误差信号的功率谱密度, 黑线为锁定系统的底噪

    Fig. 3.  The power spectral density (PSD) of the error signal. The red line is the PSD of the error signal after locking, the blue line is the PSD of the error signal before locking, and the black line is the measured noise floor of the system.

    图 4  (a)磁场锁定前和(b)磁场锁定后, 6Li原子$|2\rangle$$|5\rangle$态之间的拉比振荡. 蓝色点为测量值, 红色曲线为拟合曲线

    Fig. 4.  (a) Rabi oscillation between 6Li ground state $|2\rangle$ and $|5\rangle$: (a) Without magnetic lock; (b) with magnetic lock. Blue line: measured results; red line: fitted results

    图 5  锁定前后的原子损失谱 (a) Raman光π脉冲2.5 μs, 没有磁场锁定时的拉曼跃迁谱; (b) Raman光π脉冲2.5 μs, 磁场锁定时的原子损失谱; (c) Raman光π脉冲24 μs, 磁场锁定时的拉曼跃迁谱. 蓝色的点是测量值, 红线为拟合曲线

    Fig. 5.  The atom loss spectrum. The atom loss spectrum with 2.5 μs Raman π pulse duration when the magnetic field is (a) unlocked and (b) locked; (c) the atom loss spectrum with 24 μs Raman π pulse duration when the magnetic field is locked. The blue dots are the measured data, and the red line is the fitted curve.

    图 6  原子损失谱的高斯拐点处原子数的抖动 (a) Raman光π脉冲为2.5 $\text{µ}{\rm{s}}$时, 红色(蓝色)数据点为磁场锁定(未锁定)时原子的抖动; (b) Raman光π脉冲为24 $\text{µ}{\rm{s}}$时, 绿色数据点为磁场锁定时原子的抖动. 图(b)与图(a)相比, 原子数对失谐有不同的敏感度系数, 提高了16.5倍

    Fig. 6.  Relative atom number fluctuation when two-photon detuning is at half width of the atom loss spectrum: (a) When Raman π pulse duration is 2.5 $\text{µ}{\rm{s}}$, red (blue) dots are the measured data when the magnetic field is locked (unlocked); (b) when Raman π pulse duration is 24 $\text{µ}{\rm{s}}$, green dots are the measured data when the magnetic field is locked

  • [1]

    Xu Z, Wu Y, Tian L, Chen L, Zhang Z, Yan Z, Li S, Wang H, Xie C, Peng K 2013 Phys. Rev. Lett. 111 240503Google Scholar

    [2]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar

    [3]

    Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar

    [4]

    Georgescu I M, Ashhab S, Nori F 2014 Rev. Mod. Phys. 86 153Google Scholar

    [5]

    杨荣国, 张超霞, 李妮, 张静, 郜江瑞 2019 物理学报 68 094205Google Scholar

    Yang R G, Zhang C X, Li N, Zhang J, Gao J R 2019 Acta Phys. Sin. 68 094205Google Scholar

    [6]

    Jing J, Zhang J, Yan Y, Zhao F, Xie C, Peng K 2003 Phys. Rev. Lett. 90 167903Google Scholar

    [7]

    Riedl S, Lettner M, Vo C, Baur S, Rempe G, Durr S 2012 Phys. Rev. A 85 022318Google Scholar

    [8]

    Szwer D J, Webster S C, Steane A M, Lucas D M 2011 J. Phys. B: At. Mol. Opt. Phys. 44 025501Google Scholar

    [9]

    De Lange G, Wang Z H, Ristè D, Dobrovitski V V, Hanson R 2010 Science 330 60Google Scholar

    [10]

    Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225Google Scholar

    [11]

    Bruun G M 2004 Phys. Rev. A. 70 053602Google Scholar

    [12]

    Hazlett E L, Zhang Y, Stites R W, O’Hara K M 2012 Phys. Rev. Lett. 108 045304Google Scholar

    [13]

    Jagannathan A, Arunkumar N, Joseph J A, Thomas J E 2016 Phys. Rev. Lett. 116 075301Google Scholar

    [14]

    Deng S J, Shi Z Y, Diao P P, Yu Q L, Zhai H, Qi R, Wu H B 2016 Science 353 371Google Scholar

    [15]

    Deng S J, Diao P P, Yu Q L, Wu H B 2015 Chin. Phys. Lett. 32 053401Google Scholar

    [16]

    Ruster T, Schmiegelow C T, Kaufmann H, Warschburger C, Schmidt-Kaler F, Poschinger U G 2016 Appl. Phys. B 122 254

    [17]

    Brandl M F, van Mourik M W, Postler L, Nolf A, Lakhmanskiy K, Paiva R R, Moller S, Daniilidis N, Haffner H, Kaushal V, Ruster T, Warschburger C, Kaufmann H, Poschinger U G, Schmidt-Kaler F, Schindler P, Monz T, Blatt R 2016 Rev. Sci. Instrum. 87 113103Google Scholar

    [18]

    Lamporesi G, Donadello S, Serafini S, Ferrari G 2013 Rev. Sci. Instrum. 84 063102Google Scholar

    [19]

    Farolfi A, Trypogeorgos D, Colzi G, Fava E, Lamporesi G, Ferrari G 2019 Rev. Sci. Instrum. 90 115114Google Scholar

    [20]

    Kornack T W, Smullin S J, Lee S K, Romalis M V 2007 Appl. Phys. Lett. 90 223501Google Scholar

    [21]

    Tayler M C D, Theis T, Sjolander T F, Blanchard J W, Kentner A, Pustelny S, Pines A, Budker D 2017 Rev. Sci. Instrum. 88 091101Google Scholar

    [22]

    Burt E A, Ekstrom C R 2002 Rev. Sci. Instrum. 73 2699Google Scholar

    [23]

    Kubelka-Lange A, Herrmann S, Grosse J, Lammerzahl C, Rasel E M, Braxmaier C 2016 Rev. Sci. Instrum. 87 063101Google Scholar

    [24]

    Shilmi K 2013 Ph.D. Dissertation (Israel: Weizmann Institute Of Science)

    [25]

    Dedman C J, Dall R G, Byron L J, Truscott A G 2007 Rev. Sci. Instrum. 78 024703Google Scholar

    [26]

    Merkel B, Thirumalai K, Tarlton J E, Schafer V M, Ballance C J, Harty T P, Lucas D M 2019 Rev. Sci. Instrum. 90 044702Google Scholar

    [27]

    Tarlton J E 2018 Ph.D. Dissertation (Ann Arbor: Imperial College London )

    [28]

    Xu X T, Wang Z Y, Jiao R H, Yi C R, Sun W, Chen S 2019 Rev. Sci. Instrum. 90 054708Google Scholar

    [29]

    Yang Y M, Xie H T, Ji W C, Wang Y F, Zhang W Y, Chen S, Jiang X 2019 Rev. Sci. Instrum. 90 014701Google Scholar

    [30]

    Wang J, She S, Zhang S 2002 Rev. Sci. Instrum. 73 2175Google Scholar

    [31]

    Botti L, Buffa R, Bertoldi A, Bassi D, Ricci L 2006 Rev. Sci. Instrum. 77 035103Google Scholar

    [32]

    Zhang X, Chen Y, Wu Z, Wang J, Fan J, Deng S, Wu H 2021 Science 373 1359Google Scholar

    [33]

    俞千里, 邓书金, 刁鹏鹏, 李芳, 尉石, 武海斌 2017 量子光学学报 23 254

    Yu Q L, Deng S J, Diao P P, Li F, Yu s, Wu H B 2017 J. Quantum Opt. 23 254

    [34]

    Li R, Wu Y L, Rui Y, Li B, Jiang Y Y, Ma L S, Wu H B 2020 Phys. Rev. Lett. 124 063002Google Scholar

    [35]

    Claudon J, Zazunov A, Hekking F W J, Buisson O 2008 Phys. Rev. B 78 184503Google Scholar

  • [1] 高吉明, 狄国文, 鱼自发, 唐荣安, 徐红萍, 薛具奎. 人工磁场下各向异性偶极玻色气体的量子相变. 物理学报, 2024, 73(13): 130503. doi: 10.7498/aps.73.20240376
    [2] 白净, 谢廷. 利用重归一化Numerov方法研究超冷双原子碰撞. 物理学报, 2022, 71(3): 033401. doi: 10.7498/aps.71.20211308
    [3] 白净, 谢廷. 利用重归一化Numerov方法研究超冷双原子碰撞. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211308
    [4] 王娟, 张笑天, 武泽茂, 邓书金, 武海斌. 超冷6Li费米气体的密度涨落和亚泊松分布. 物理学报, 2020, 69(13): 136701. doi: 10.7498/aps.69.20200603
    [5] 鹿博, 王大军. 超冷极性分子. 物理学报, 2019, 68(4): 043301. doi: 10.7498/aps.68.20182274
    [6] 石悦然, 卢倬成, 王璟琨, 张威. 轨道Feshbach共振附近类碱土金属原子的杂质态问题. 物理学报, 2019, 68(4): 040305. doi: 10.7498/aps.68.20181937
    [7] 刁鹏鹏, 邓书金, 李芳, 武海斌. 超冷费米气体的膨胀动力学研究新进展. 物理学报, 2019, 68(4): 046702. doi: 10.7498/aps.68.20182293
    [8] 张鑫, 张蕴川, 李建, 李仁杰, 宋庆坤, 张佳乐, 樊莉. 波长锁定激光二极管共振泵浦Nd:YVO4晶体连续波自拉曼激光器的设计与研究. 物理学报, 2017, 66(19): 194203. doi: 10.7498/aps.66.194203
    [9] 王兵, 朱强, 熊德智, 吕宝龙. 磁阱中超冷玻色气体临界行为的观测. 物理学报, 2016, 65(11): 110504. doi: 10.7498/aps.65.110504
    [10] 李斌, 丁欣, 孙冰, 盛泉, 姜鹏波, 张巍, 刘简, 范琛, 张海永, 姚建铨. 28.2 W波长锁定878.6 nm激光二极管共振抽运双晶体1064 nm激光器. 物理学报, 2014, 63(21): 214206. doi: 10.7498/aps.63.214206
    [11] 李艳. 从光晶格中释放的超冷玻色气体密度-密度关联函数研究. 物理学报, 2014, 63(6): 066701. doi: 10.7498/aps.63.066701
    [12] 荆庆丽, 杜春光, 高健存. 表面等离子共振现象的新应用——微弱磁场的测量. 物理学报, 2013, 62(3): 037302. doi: 10.7498/aps.62.037302
    [13] 秦帅锋, 郑公平, 马骁, 李海燕, 童晶晶, 杨博. 弱磁场下三阱光学超晶格中自旋为1的超冷原子特性研究. 物理学报, 2013, 62(11): 110304. doi: 10.7498/aps.62.110304
    [14] 门福殿, 何晓刚, 周勇, 宋新祥. 强磁场中超冷费米气体的相对论效应. 物理学报, 2011, 60(10): 100502. doi: 10.7498/aps.60.100502
    [15] 李绍, 任育峰, 王宁, 田野, 储海峰, 黎松林, 陈莺飞, 李洁, 陈赓华, 郑东宁. 利用高温超导直流量子干涉器件进行10-6 T量级磁场下核磁共振的研究. 物理学报, 2009, 58(8): 5744-5749. doi: 10.7498/aps.58.5744
    [16] 孙宇航, 李福利. 单个二能级超冷原子在多个单模腔场间的共振隧穿和光子辐射. 物理学报, 2006, 55(3): 1153-1159. doi: 10.7498/aps.55.1153
    [17] 武宏宇, 尹 澜. 超流费米气体相滑移时的密度分布. 物理学报, 2006, 55(2): 490-493. doi: 10.7498/aps.55.490
    [18] 邵元智, 钟伟荣, 林光明, 李坚灿. 随机外磁场作用下Ising自旋体系的随机共振. 物理学报, 2004, 53(9): 3157-3164. doi: 10.7498/aps.53.3157
    [19] 夏佑林, 叶朝辉. 14N核四极共振中自旋锁定的偏共振效应. 物理学报, 1995, 44(6): 970-976. doi: 10.7498/aps.44.970
    [20] 彭金生, 黄湘友, 刘武. 强磁场中原子共振荧光的光谱分布. 物理学报, 1989, 38(9): 1545-1550. doi: 10.7498/aps.38.1545
计量
  • 文章访问数:  4798
  • PDF下载量:  176
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-06
  • 修回日期:  2022-03-29
  • 上网日期:  2022-07-03
  • 刊出日期:  2022-07-20

/

返回文章
返回