搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超冷原子气体中的孤子共振与反共振调控

何章明 翟德训 朱钱泉 潘湘

引用本文:
Citation:

超冷原子气体中的孤子共振与反共振调控

何章明, 翟德训, 朱钱泉, 潘湘

The controlled resonance and anti-resonance of soliton in ultracold atomic gases

He Zhang-Ming, Zhai De-Xun, Zhu Qian-Quan, Pan Xiang
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 考虑周期性驱动的谐振势阱,通过数值模拟研究了超冷原子气体中的孤子性质。结果有趣的发现:当孤子位于势阱中心时,在特定的频率驱动下,孤子的幅度振荡产生共振现象,其振荡幅度随着谐振势阱囚禁频率的增大而增大,共振频率随着孤子初始幅度的增大而增大;当孤子位于势阱边缘时,孤子运动的共振、反共振和准周期振荡也能被观察到。此外,通过调节驱动频率可实现孤子运动的共振与反共振之间的转换。相关结果可为超冷原子气体的精确调控提供帮助。
    The Kapitza’s pendulum is inverted pendulum that is dynamically stabilized by a fast driving of its pivot point. Many applications of Kapitza stabilization in quantum systems have been proposed, such as optical molasses, the stability of optical resonators, preparation of molecular ions, the breaking of translation symmetry, the periodically driven sine-Gordon model, polariton Rabi oscillation, the stabilization of bright solitons in a Bose-Einstein condensate, and so on. In particular, Kapitza stabilization can be used to trap particles. The most notable example of such an application is the Paul trap.
    Recently, the Kapitza trap is created by superimposing time-tuned focused laser beams to produce a periodic driven harmonic potential for ultracold atomic gases. This work opens up new possibilities to study Floquet systems of ultracold atomic gases. So we consider the periodic driven harmonic potential, and investigate the properties of soliton in ultracold atomic gases by numerical simulations. It is interesting found that, when the soliton is located at the center of the harmonic potential, a resonance phenomenon of soliton amplitude oscillation occurs under specific driven frequency. In addition, the oscillation amplitude increases with the increasing of the trapping frequency of the harmonic potential, and the resonance frequency increases with the increasing of the soliton initial amplitude.
    The change of driven frequency and initial phase has a significant effect on soliton motion when the soliton is located at the edge of the harmonic potential. When the initial phase is zero, there is a characteristic driven frequency. For the case of the driven frequency is equal to the characteristic frequency, soliton motion exhibits periodic oscillations. For the case of the driven frequency is slightly lower than the characteristic frequency, the resonance of soliton oscillation can be found. While the driving frequency is slightly higher than the characteristic frequency, the anti-resonance of soliton oscillation can be found. In addition, it was found that the characteristic driven frequency increases linearly with the increasing of the trapping frequency of the harmonic potential. When the initial phase is not equal to zero, the irregular oscillation, quasi-periodic oscillation and periodic oscillation can be observed with increasing driven frequency. While the driven frequency is equal to a specific value, the resonance of soliton oscillation can also obtained. Furthermore, the fast driving has no effect on the motion trajectory of solitons. These results can provide help for the precise controlling of ultracold atomic gases.
  • [1]

    Weitenberg C, Simonet J 2021 Nat. Phys. 17 1342

    [2]

    Bukov M, D’Alessio L, Polkovnikov A 2015 Adv. Phys. 64 139

    [3]

    Eckardt A 2017 Rev. Mod. Phys. 89 011004

    [4]

    Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M C, Schuster D, Simon J, Zilberberg O, Carusotto I 2019 Rev. Mod. Phys. 91 015006

    [5]

    Oka T, Kitamura S 2019 Annu. Rev. Condens. Matter Phys. 10 387

    [6]

    Jiao Chen, Jian Yue, Zhang Ai-Xia, Xue Ju-Kui 2023 Acta Phys. Sin. 72 060302 (in Chinese) [焦宸, 简粤, 张爱霞, 薛具奎 2023 物理学报 72 060302]

    [7]

    Zhao W L, Liu J 2024 Phys. Rev. A 109 052215

    [8]

    Zhang L, Ke Y G, Lin L, Lee C H 2024 Phys. Rev. B 109 184313

    [9]

    Chen L, Zhu F, Zhang Y B, Pu H 2025 Phys. Rev. A 111 L011303

    [10]

    Kamal H, Kemp J, He Y C, Fuji Y, Aidelsburger M, Zoller P, Yao N Y 2024 Phys. Rev. Lett. 133 163403

    [11]

    Zhou L W, Chen C, Gong J B 2016 Phys. Rev. B 94 075443

    [12]

    Kapitza P L 1951 Usp. Fiz. Nauk 44 7

    [13]

    Bagnato V S, Bigelow N P, Surdutovich G I, Zílio S C 1994 Opt. Lett. 19 1568

    [14]

    Torosov B T, Della Valle G, Longhi S 2013 Phys. Rev. A 88 052106

    [15]

    Goldman N, Dalibard J 2014 Phys. Rev. X 4 031027

    [16]

    Citro R, Dalla Torre E G, D’Alessio L, Polkovnikov A, Babadi M, Oka T, Demler E 2015 Ann. Phys. 360 694

    [17]

    Smirnova O, Spanner M, Ivanov M Y 2003 Phys. Rev. Lett. 90 243001

    [18]

    Rajagopal S V, Fujiwara K M, Senaratne R, Singh K, Geiger Z A, Weld D M 2017 Ann. Phys. 529 1700008

    [19]

    Voronova N S, Elistratov A A, Lozovik Y E 2016 Phys. Rev. B 94 045413

    [20]

    Martin J, Georgeot B, Guéry-Odelin D, Shepelyansky D L 2018 Phys. Rev. A 97 023607

    [21]

    Park S J, Andersen H K, Mai S, Arlt J, Sherson J F 2012 Phys. Rev. A 85 033626

    [22]

    Eckardt A, Weiss C, Holthaus M 2005 Phys. Rev. Lett. 95 260404

    [23]

    He Z M, Zhang Z Q 2016 Acta Phys. Sin. 65 110502 (in Chinese) [何章明,张志强 2016 物理学报 65 110502]

    [24]

    Abdullaev F Kh, Caputo J G, Kraenkel R A, Malomed Boris A 2003 Phys. Rev. A 67 013605

    [25]

    Goldman N, Dalibard J 2014 Phys. Rev. X 4 031027

    [26]

    Jiang J, Bernhart E, Röhrle M, Benary J, Beck M, Baals C, Ott H 2023 Phys. Rev. Lett. 131 033401

    [27]

    Zhang X F, Yang Q, Zhang J F, Chen X Z, Liu W M 2008 Phys. Rev. A 77 023613

    [28]

    Kengne E, Liu W M 2018 Phys. Rev. E 98 012204

  • [1] 王金玲, 张昆, 林机, 李慧军. 二维激子-极化子凝聚体中冲击波的产生与调控. 物理学报, doi: 10.7498/aps.73.20240229
    [2] 李新月, 祁娟娟, 赵敦, 刘伍明. 自旋-轨道耦合二分量玻色-爱因斯坦凝聚系统的孤子解. 物理学报, doi: 10.7498/aps.72.20222319
    [3] 孙斌, 赵立臣, 刘杰. 双孤子非线性干涉中的狄拉克磁单极势. 物理学报, doi: 10.7498/aps.72.20222416
    [4] 陈礼元, 高超, 林机, 李慧军. $ {\cal{PT}}$对称极化子凝聚体系统中的稳定孤子及其调控. 物理学报, doi: 10.7498/aps.71.20220475
    [5] 贾瑞煜, 方乒乒, 高超, 林机. 玻色-爱因斯坦凝聚体中的淬火孤子与冲击波. 物理学报, doi: 10.7498/aps.70.20210564
    [6] 文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐. 线性塞曼劈裂对自旋-轨道耦合玻色-爱因斯坦凝聚体中亮孤子动力学的影响. 物理学报, doi: 10.7498/aps.68.20182013
    [7] 刘昊华, 王少华, 李波波, 李桦林. 缺陷致非线性电路孤子非对称传输. 物理学报, doi: 10.7498/aps.66.100502
    [8] 朱坤占, 贾维国, 张魁, 于宇, 张俊萍, 门克内木乐. 在反常色散区艾里脉冲与光孤子相互作用规律的研究. 物理学报, doi: 10.7498/aps.65.024208
    [9] 乔海龙, 贾维国, 王旭东, 刘宝林, 门克内木乐, 杨军, 张俊萍. 拉曼增益对双折射光纤中孤子传输特性的影响. 物理学报, doi: 10.7498/aps.63.094208
    [10] 乔海龙, 贾维国, 刘宝林, 王旭东, 门克内木乐, 杨军, 张俊萍. 拉曼增益对孤子传输特性的影响. 物理学报, doi: 10.7498/aps.62.104212
    [11] 庄彬先, 郭珺, 项元江, 戴小玉, 文双春. F-函数扩展法求解超介质中的亮孤子和暗孤子. 物理学报, doi: 10.7498/aps.62.054207
    [12] 吴钦宽. 一类非线性扰动Burgers方程的孤子变分迭代解法. 物理学报, doi: 10.7498/aps.61.020203
    [13] 陶锋, 陈伟中, 许文, 都思丹. 基于非线性超传导的能流不对称传输现象的研究. 物理学报, doi: 10.7498/aps.61.134103
    [14] 石兰芳, 周先春. 一类扰动Burgers方程的孤子同伦映射解. 物理学报, doi: 10.7498/aps.59.2915
    [15] 何章明, 王登龙. 凝聚体中亮孤子和暗孤子的交替演化. 物理学报, doi: 10.7498/aps.56.3088
    [16] 翁紫梅, 陈 浩. 单离子各向异性影响下的一维铁磁链中的孤子. 物理学报, doi: 10.7498/aps.56.1911
    [17] 刘海兰, 文双春, 熊 敏, 戴小玉. 超常介质中暗孤子的形成和传输特性研究. 物理学报, doi: 10.7498/aps.56.6473
    [18] 沈守枫. (1+1)维广义的浅水波方程的变量分离解和孤子激发模式. 物理学报, doi: 10.7498/aps.55.1016
    [19] 洪学仁, 段文山, 孙建安, 石玉仁, 吕克璞. 非均匀尘埃等离子体中孤子的传播. 物理学报, doi: 10.7498/aps.52.2671
    [20] 卫青, 王奇, 施解龙, 陈园园. 孤子和辐射场的非线性相互作用. 物理学报, doi: 10.7498/aps.51.99
计量
  • 文章访问数:  63
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-03

/

返回文章
返回