搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

运动光格中非线性作用随时空变化的玻色-爱因斯坦凝聚体的混沌时空动力学

李飞 李文武

引用本文:
Citation:

运动光格中非线性作用随时空变化的玻色-爱因斯坦凝聚体的混沌时空动力学

李飞, 李文武

Chaotic spatiotemporal dynamics of Bose-Einstein condensates with nonlinear time- and space-varying interactions in moving optical lattices

LI Fei, LI Wenwu
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文研究运动光格中非线性作用随时空变化的玻色-爱因斯坦凝聚体的混沌时空动力学. 在运动光格势强度和非线性作用调制强度较小的情况下, 系统满足微扰条件, 将Melnikov函数法应用于理论分析, 得到了系统的Melnikov时空混沌判据. 当系统不满足微扰条件时, 数值模拟表明, 对于原子间呈吸引作用的玻色-爱因斯坦凝聚体, 非线性作用调制强度的增大可以加深系统的时空混沌程度. 在某些参数区域, 非线性作用调制频率对系统时空动力学行为具有重要影响. 进一步的数值研究结果揭示, 较大的化学势不仅可以抑制吸引系统的时空混沌, 还可以抑制排斥系统的时空混沌. 基于以上研究结果, 在实验中可以根据需要规避或引发玻色-爱因斯坦凝聚系统的时空混沌.
    The dynamical behaviors of Bose-Einstein condensates (BECs) depend largely on the nonlinear interactions between BEC atoms. The advancement of experimental techniques enables the rapid and effective modulation of the nonlinear interactions through Feshbach resonance technique. At present, both the nonlinear time-varying interaction and nonlinear space-varying interaction have been realized, respectively, thus making it possible to simultaneously modulate the nonlinear interactions in time and space through the combination of techniques. It will provide more options to conduct various studies by manipulating the BECs. Therefore, BECs with time- and space-varying interactions must possess unique advantages in studying BEC dynamics.This paper focuses on the chaotic spatiotemporal dynamics of BECs with nonlinear time- and space-varying interactions in moving optical lattices. When the intensities of the moving optical lattice potential and the modulation of the nonlinear interaction are small, the system satisfies the perturbation conditions and the Melnikov-function method is used in the theoretical analyses to obtain the Melnikov spatiotemporal chaotic criterion of the system. When the system does not meet the perturbation conditions, numerical simulations show that for a BEC with an attractive atomic interaction, increasing the modulation intensity of the nonlinear interaction can deepen the degree of spatiotemporal chaos in the system. In certain parameter regions, the modulation frequency of the nonlinear interaction can have a significant influence on the spatiotemporal dynamical behavior of the system. Further numerical research results show that larger chemical potentials can suppress the spatiotemporal chaos not only in the attractive BEC but also in the repulsive BEC. Based on the above research results, spatiotemporal chaos in BEC system can be avoided or triggered off in experiments as needed.
  • 图 1  改变非线性作用调制强度过程中庞加莱截面的演化, 其他参数和初始条件设置为$ \tilde \mu = 0.8 $, $ \tilde v = 2.0 $, $ \tilde I = 0.23 $, $ {\tilde g_0} = - 0.75 $, $ \omega = 0.4 $, $ A(0) = 0.26 $, $ \dot A(0) = 0 $

    Fig. 1.  Evolution of Poincaré sections in the process of changing the modulation intensity of the nonlinear interaction. The other parameters and initial conditions are set as $ \tilde \mu = 0.8 $, $ \tilde v = 2.0 $, $ \tilde I = 0.23 $, $ {\tilde g_0} = - 0.75 $, $ \omega = 0.4 $, $ A(0) = 0.26 $, $ \dot A(0) = 0 $.

    图 2  增大化学势过程中相图的演化 (a)—(c)图对应的化学势$ \tilde \mu $的值分别为1.7, 2.5, 10; 其他参数和初始条件与图1(d)相同

    Fig. 2.  Evolution of phase portraits with the increase of chemical potential: The values of the chemical potential $ \tilde \mu $ corresponding to (a)–(c) are 1.7, 2.5, and 10, respectively. The other parameters and initial conditions are the same as Fig.1(d).

    图 3  不同$ \omega $值对应的庞加莱截面 (a), (a') $ \omega = 29.999 $; (b), (b') $ \omega = 30 $; (c), (c') $ \omega = 30.00001 $; 其他参数和初始条件与图1(d)相同

    Fig. 3.  The Poincaré sections for different values of $ \omega $: (a), (a') $ \omega = 29.999 $; (b), (b') $ \omega = 30 $; (c), (c') $ \omega = 30.00001 $. The other parameters and initial conditions are the same as Fig.1 (d).

    图 4  不同$ \omega $值时的相图和对应的庞加莱截面 (a), (a') $ \omega = 1 $; (b), (b') $ \omega = 2.2 $; (a), (b)是相图; (a'), (b')是对应的庞加莱截面; 参数和初始条件设置为$ \tilde \mu = 2.11 $, $ \tilde v = 2.0 $, $ \tilde I = 0.25 $, $ {\tilde g_0} = {\tilde g_1} = - 0.7 $, $ A(0) = 0.28 $, $ \dot A(0) = 0 $

    Fig. 4.  The phase portraits and corresponding Poincaré sections for different values of $ \omega $: (a), (a') $ \omega = 1 $; (b), (b') $ \omega = 2.2 $; (a), (b) are phase portraits; (a'), (b')are the corresponding Poincaré sections. The parameters and initial conditions are set as $ \tilde \mu = 2.11 $, $ \tilde v = 2.0 $, $ \tilde I = 0.25 $, $ {\tilde g_0} = {\tilde g_1} = - 0.7 $, $ A(0) = 0.28 $, $ \dot A(0) = 0 $.

    图 5  $ \tilde \mu = 30 $时的相图, 其他参数和初始条件与图4(b)相同

    Fig. 5.  The phase portrait for $ \tilde \mu = 30 $. The other parameters and initial conditions are the same as Fig. 3(b).

    图 6  原子间呈排斥作用的BEC系统的混沌相图和对应的$ A(\zeta ) $混沌时空演化曲线, 参数和初始条件为$ \tilde \mu = 3 $, $ \tilde v = $$ 1 $, $ \tilde I = 0.9 $, $ {\tilde g_1} = 0.6 $, $ {\tilde g_0} = 0.7 $, $ \omega = 1.2 $, $ A(0) = 0.6 $, $ \dot A(0) = 0 $

    Fig. 6.  The chaotic phase portrait and corresponding chaotic spatiotemporal evolution curve of $ A(\zeta ) $ of a BEC system with a repulsive interaction between atoms. The parameters and initial conditions are set as $ \tilde \mu = 3 $, $ \tilde v = 1 $, $ \tilde I = 0.9 $, $ {\tilde g_1} = 0.6 $, $ {\tilde g_0} = 0.7 $, $ \omega = 1.2 $, $ A(0) = 0.6 $, $ \dot A(0) = 0 $.

    图 7  $ \tilde \mu = 40 $时的相图, 其他参数和初始条件与图6相同

    Fig. 7.  The phase portrait for $ \tilde \mu = 40 $. The other parameters and initial conditions are the same as Fig.6.

  • [1]

    Anderson M H, Ensher J R, Matthews M R, E Wieman C, Cornell E A 1995 Science 269 198Google Scholar

    [2]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969Google Scholar

    [3]

    Efremidis N K, Sears S, Christodoulides D N, Fleischer J W, Segev M 2002 Phys. Rev. E 66 046602Google Scholar

    [4]

    Dahan B M, Peik E, Reichel J, Castin Y, Salomon C 1996 Phys. Rev. Lett. 76 4508Google Scholar

    [5]

    Anderson B P, Kasevich M A 1998 Science 282 1686Google Scholar

    [6]

    Liu S, Xiong H, Xu Z, Huang G 2003 J. Phys. B 36 2083Google Scholar

    [7]

    Gao J M, Di G W, Yu Z F, Tang R A, Xu H P, Xue J K 2024 Acta Phys. Sin. 73 130503 (in Chinese) [高吉明, 狄国文, 鱼自发, 唐荣安, 徐红萍, 薛具奎 2024 物理学报73 130503]

    [8]

    Pachos J K, Knight P L 2003 Phys. Rev. Lett. 91 107902Google Scholar

    [9]

    Morsch O, Müller J H, Cristiani M, Ciampini D, Arimondo E 2001 Phys. Rev. Lett. 87 140402Google Scholar

    [10]

    Bhattacherjee A B, Pietrzyk M 2008 Cent. Eur. J. Phys. 6 26

    [11]

    Choi D I, Niu Q 1999 Phys. Rev. Lett. 82 2022Google Scholar

    [12]

    Wu B, Niu Q 2001 Phys. Rev. A 64 061603(R

    [13]

    Cristiani M, Morsch O, Müller J H, Ciampini D, Arimondo E 2002 Phys. Rev. A 65 063612Google Scholar

    [14]

    Liu J, Fu L B, Ou B Y, Chen S G, Choi D I, Wu B, Niu Q 2002 Phys. Rev. A 66 023404Google Scholar

    [15]

    Choi D I, Niu Q 2003 Phys. Lett. A 318 558Google Scholar

    [16]

    Trombettoni A, Smerzi A 2001 Phys. Rev. Lett. 86 2353Google Scholar

    [17]

    Berg-Sørensen K, Mølmer K 1998 Phys. Rev. A 58 1480Google Scholar

    [18]

    Holthaus M 2000 J. Opt. B: Quantum Semiclassical Opt. 2 589Google Scholar

    [19]

    Cerimele M M, Chiofalo M L, Pistella F, Succi S, Tosi M P 2000 Phys. Rev. E 62 1382Google Scholar

    [20]

    Scott R G, Martin A M, Fromhold T M, Bujkiewicz S, Sheard F W, Leadbeater M 2003 Phys. Rev. Lett. 90 110404Google Scholar

    [21]

    Filho V S, Gammal A, Frederico T, Tomio L 2000 Phys. Rev. A 62 033605(R

    [22]

    Hai W H, Lee C H, Chong G S, Shi L 2002 Phys. Rev. E 66 026202Google Scholar

    [23]

    Li F, Shu W X, Jiang J G, Luo H L, Ren Z Z 2007 Eur. Phys. J. D 41 355Google Scholar

    [24]

    Li F, Shu W X, Luo H L, Ren Z Z 2007 Chin. Phys. 16 650Google Scholar

    [25]

    Li F, Ren Z Z, Luo H L, Shu W X, Wu Q 2007 Commun. Theor. Phys. 48 107Google Scholar

    [26]

    李飞, 张冬霞, 李文斌 2011 物理学报 60 120304Google Scholar

    Li F, Zhang D X, Li W B 2011 Acta Phys. Sin. 60 120304Google Scholar

    [27]

    Li F, Zhang D X, Rong S G, Xu Y 2013 J. Exp. Theor. Phys. 117 800Google Scholar

    [28]

    Li F, He Z J, Li W W 2023 Commun. Theor. Phys. 75 035501Google Scholar

    [29]

    Li F, Li W W, He Z J 2023 Rom. J. Phys. 68 103

    [30]

    Chong G S, Hai W H, Xie Q T 2004 Phys. Rev. E 70 036213Google Scholar

    [31]

    王冠芳, 傅立斌, 赵鸿, 刘杰 2005 物理学报 54 5003Google Scholar

    Wang G F, Fu L B, Zhao H, Liu J 2005 Acta. Phys. Sin. 54 5003Google Scholar

    [32]

    Zhu Q Q, Hai W H, Rong S G 2009 Phys. Rev. E 80 016203Google Scholar

    [33]

    王力, 刘静思, 李吉, 周晓林, 陈向荣, 刘超飞, 刘伍明 2020 物理学报 69 010303Google Scholar

    Wang L, Liu J S, Li J, Zhou X L, Chen X R, Liu C F, Liu W M 2020 Acta Phys. Sin. 69 010303Google Scholar

    [34]

    王青青, 周玉珊, 王静, 樊小贝, 邵凯花, 赵月星, 宋燕, 石玉仁2023物理学报72 010030

    Wang Q Q, Zhou Y S, Wang J, Fan X B, Shao K H, Zhao Y X, Song Y, Shi Y R 2023 Acta Phys. Sin. 69 010303

    [35]

    Ruprecht P A, Edwards M, Burnett K, Clark C W 1996 Phys. Rev. A 54 4178Google Scholar

    [36]

    Denschlag J H Simsarian, J E , Häffner H, McKenzie C, Browaeys A, Cho D, Helmerson K, Rolston S L, Phillips W D 2002 J. Phys. B 35 3095

    [37]

    Mellish A S, Duffy G, McKenzie C, Geursen R, Wilson A C 2003 Phys. Rev. A 68 051601(R

    [38]

    Fallani L, Cataliotti F S, Catani J, Fort C, Modugno M, Zawada M, Inguscio M 2003 Phys. Rev. Lett. 91 240405Google Scholar

    [39]

    Kagan Y, Surkov E L, Shlyapnikov G V 1997 Phys. Rev. Lett. 79 2604Google Scholar

    [40]

    Cornish S L, Claussen N R, Roberts J L, Cornell E A, Wieman C E 2000 Phys. Rev. Lett. 85 1795Google Scholar

    [41]

    Kevrekidis P G, Theocharis G, Frantzeskakis D J, Malomed B A 2004 Phys. Rev. Lett. 90 230401

    [42]

    Theocharis G, Schmelcher P, Kevrekidis P G, Frantzeskakis D J 2005 Phys. Rev. A 72 033614Google Scholar

    [43]

    Abdullaev F K, Garnier J 2005 Phys. Rev. A 72 061605(R

    [44]

    He J R, Li H M 2011 Phys. Rev. E 83 066607Google Scholar

    [45]

    Avelar A T, Bazeia D, Cardoso W B 2009 Phys. Rev. A 79 025602(R

    [46]

    Wang D S, Hu X H, Liu W M 2010 Phys. Rev. A 82 023612Google Scholar

    [47]

    Beitia J B, García V M P, Vekslerchik V, Konotop V V 2008 Phys. Rev. Lett. 100 164102Google Scholar

    [48]

    Arroyo Meza L E, de Souza Dutra A, Hott M B 2012 Phys. Rev. E 86 026605Google Scholar

    [49]

    Arroyo Meza L E, Souza Dutra A de, Hott M B 2013 Phys. Rev. E 88 053202Google Scholar

    [50]

    Cardoso W B, Leão S A, Avelar A T, Bazeia D, Hussein M S 2010 Phys. Lett. A 374 4594Google Scholar

    [51]

    Wang D S, Song S W, Xiong B, Liu W M 2011 Phys. Rev. A 84 053607Google Scholar

    [52]

    Wang D S, Song S W, Liu W M 2012 Journal of Physics: Conference Series 400 012078Google Scholar

    [53]

    He J R, Yi L 2014 Phys. Lett. A 378 1085Google Scholar

    [54]

    Rong S G, Hai W H, Xie Q T, Zhong H H 2012 Chaos 22 033109

    [55]

    Parker N G, Proukakis N P, Barenghi C F, Adams C S 2004 Phys. Rev. Lett. 92 160403[Parker N G, Proukakis N P, Barenghi C F, Adams C S 2004 J. Phys. B 37 175]

    [56]

    Proukakis N P, Parker N G, Barenghi C F, Adams C S 2004 Phys. Rev. Lett. 93 130408Google Scholar

    [57]

    Gardiner S A, Jaksch D, Dum R, Cirac J I, Zoller P 2000 Phys. Rev. A 62 023612Google Scholar

    [58]

    Machholm M, Pethick CJ, Smith H 2003 Phys. Rev. A 67 053613Google Scholar

    [59]

    Goldstein E V, Meystre P 1999 Phys. Rev. A 59 1509Google Scholar

    [60]

    Goldstein E V, Meystre P 1999 Phys. Rev. A 59 3896Google Scholar

    [61]

    Ling H Y 2001 Phys. Rev. A 65 013608Google Scholar

    [62]

    刘式适, 刘式达 2012 物理学中的非线性方程 (第二版)(北京: 北京大学出版社)第68页]

    Liu S K, Liu S D 2012 Nonlinear Equations in Physics (2nd edition) (Beijing: [Peking University Press) p68

    [63]

    Li F, Zhou B J, Shu W X, Luo H L, Huang Z Y, Tian L 2008 Eur. Phys. J. D 50 75Google Scholar

    [64]

    Stavans J, Heslot F, Libchaber A 1985 Phys. Rev. Lett. 55 596Google Scholar

    [65]

    Bishop A R, Forest M G, McLaughlin D W, Overman II E A 1986 Physica D 23 293

  • [1] 苏斌斌, 陈建军, 吴正茂, 夏光琼. 混沌光注入垂直腔面发射激光器混沌输出的时延和带宽特性. 物理学报, doi: 10.7498/aps.66.244206
    [2] 陈海军. 变分法研究二维光晶格中玻色-爱因斯坦凝聚的调制不稳定性. 物理学报, doi: 10.7498/aps.64.054702
    [3] 农春选, 李明, 陈翠玲. Ξ型三能级原子玻色-爱因斯坦凝聚体单模光场系统中双模原子激光的压缩性质. 物理学报, doi: 10.7498/aps.63.043202
    [4] 李明, 陈翠玲. 二能级原子玻色-爱因斯坦凝聚体与双模光场相互作用系统中原子激光的压缩性质. 物理学报, doi: 10.7498/aps.63.043201
    [5] 丁虎, 严巧赟, 陈立群. 轴向加速运动黏弹性梁受迫振动中的混沌动力学. 物理学报, doi: 10.7498/aps.62.200502
    [6] 沈壮志, 林书玉. 声场中气泡运动的混沌特性. 物理学报, doi: 10.7498/aps.60.104302
    [7] 宋立军, 严冬, 刘烨. 玻色-爱因斯坦凝聚系统的量子Fisher信息与混沌. 物理学报, doi: 10.7498/aps.60.120302
    [8] 李飞, 张冬霞, 李文斌. 玻色-爱因斯坦凝聚系统中原子的空间混沌分布. 物理学报, doi: 10.7498/aps.60.120304
    [9] 赵建刚, 孙长勇, 梁宝龙, 苏杰. 虚光场对玻色-爱因斯坦凝聚体与二项式光场相互作用系统中光场压缩性质的影响. 物理学报, doi: 10.7498/aps.58.4635
    [10] 严冬, 宋立军, 陈殿伟. 两分量玻色-爱因斯坦凝聚系统的自旋压缩. 物理学报, doi: 10.7498/aps.58.3679
    [11] 时培明, 刘 彬, 侯东晓. 一类相对转动非线性动力系统的混沌运动. 物理学报, doi: 10.7498/aps.57.1321
    [12] 陈文钦, 海文华, 宋建文. 双δ激光脉冲作用下Paul阱中单离子的规则与混沌运动. 物理学报, doi: 10.7498/aps.57.1608
    [13] 王海雷, 杨世平. 三势阱中玻色-爱因斯坦凝聚的开关特性. 物理学报, doi: 10.7498/aps.57.4700
    [14] 房永翠, 杨志安, 杨丽云. 对称双势阱玻色-爱因斯坦凝聚系统在周期驱动下的动力学相变及其量子纠缠熵表示. 物理学报, doi: 10.7498/aps.57.661
    [15] 王志霞, 张喜和, 沈 柯. 玻色-爱因斯坦凝聚中的混沌反控制. 物理学报, doi: 10.7498/aps.57.7586
    [16] 房永翠, 杨志安. 玻色-爱因斯坦凝聚体系中的混沌隧穿行为. 物理学报, doi: 10.7498/aps.57.7438
    [17] 陈文钦, 海文华, 李 辉, 马志英. 脉冲式棘齿势场作用下囚禁离子的规则与混沌运动. 物理学报, doi: 10.7498/aps.56.1305
    [18] 余学才, 叶玉堂, 程 琳. 势阱中玻色-爱因斯坦凝聚气体的势场有效性和粒子数极限判据. 物理学报, doi: 10.7498/aps.55.551
    [19] 罗诗裕, 谭永明, 邵明珠, 韦洛霞, 邓立虎. 沟道效应的运动阻尼与系统走向混沌的临界特征. 物理学报, doi: 10.7498/aps.53.1157
    [20] 周 明, 方家元, 黄春佳. 相互作用原子玻色-爱因斯坦凝聚体诱导的光场压缩效应. 物理学报, doi: 10.7498/aps.52.1916
计量
  • 文章访问数:  256
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-18
  • 修回日期:  2025-04-02
  • 上网日期:  2025-04-18

/

返回文章
返回