搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

运动光格中非线性作用随时空变化的玻色-爱因斯坦凝聚体的混沌时空动力学

李飞 李文武

引用本文:
Citation:

运动光格中非线性作用随时空变化的玻色-爱因斯坦凝聚体的混沌时空动力学

李飞, 李文武

Chaotic spatiotemporal dynamics of Bose-Einstein condensates with time- and space-varying interactions in moving optical lattices

Li Fei, Li Wenwu
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本文研究运动光格中非线性作用随时空变化的玻色-爱因斯坦凝聚体的混沌时空动力学。在运动光格势强度和非线性作用调制强度较小的情况下,系统满足微扰条件,将Melnikov函数法应用于理论分析,得到了系统的Melnikov时空混沌判据。当系统不满足微扰条件时,数值模拟表明,对于原子间呈吸引作用的玻色-爱因斯坦凝聚体,非线性作用调制强度的增大可以加深系统的时空混沌程度。在某些参数区域,非线性作用调制频率对系统时空动力学行为具有重要影响。进一步的数值研究结果揭示,较大的化学势不仅可以抑制吸引系统的时空混沌,还可以抑制排斥系统的时空混沌。基于以上研究结果,在实验中可以根据需要规避或引发玻色-爱因斯坦凝聚系统的时空混沌。
    The dynamical behaviors of Bose-Einstein condensates (BECs) depend largely on the nonlinear interactions between BEC atoms. The advancement of experimental techniques enables the rapid and effective modulation of the nonlinear interactions through Feshbach resonance technique. At present, both the time-varying nonlinear interaction and space-varying nonlinear interaction have been realized, respectively. This makes it possible to simultaneously modulate the nonlinear interactions in time and space through the combination of techniques. It will provide more options to conduct various studies by manipulating the BECs. Therefore, BECs with time- and space-varying interactions must possess unique advantages in studying BEC dynamics.
    This paper studies the chaotic spatiotemporal dynamics of BECs with time- and space-varying nonlinear interactions in moving optical lattices. When the intensities of the moving optical lattice potential and the modulation of the nonlinear interaction are small, the system satisfies the perturbation conditions and the Melnikov-function method is used in the theoretical analyses to obtain the Melnikov spatiotemporal chaotic criterion of the system. When the system does not meet the perturbation conditions, numerical simulations show that, for a BEC with an attractive atomic interaction, increasing the modulation intensity of the nonlinear interaction can deepen the degree of spatiotemporal chaos in the system. In certain parameter regions, the modulation frequency of the nonlinear interaction can have a significant impact on the spatiotemporal dynamical behavior of the system. Further numerical research results show that larger chemical potentials can suppress the spatiotemporal chaos in not only the attractive but also the repulsive BECs. Based on the above research results, it is possible to avoid or trigger spatiotemporal chaos of BEC systems in experiments according to demand.
  • [1]

    Anderson M H, Ensher J R, Matthews M R, E Wieman C 1995 Cornell E A, Science 269 198

    [2]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995Phys. Rev. Lett. 75 3969

    [3]

    Efremidis N K, Sears S, Christodoulides D N, Fleischer J W, Segev M 2002Phys. Rev. E 66 046602

    [4]

    BenDahan M, Peik E, Reichel J, Castin Y, Salomon C 1996Phys. Rev. Lett. 76 4508

    [5]

    Anderson B P, Kasevich M A 1998Science 282 1686

    [6]

    Liu S, Xiong H, Xu Z, Huang G 2003J. Phys. B 36 2083

    [7]

    Gao J M, Di G W, Yu Z F, Tang R A, Xu H P, Xue J K 2024Acta Phys. Sin. 73130503 (in Chinese) [高吉明, 狄国文, 鱼自发, 唐荣安, 徐红萍, 薛具奎2024物理学报73130503]

    [8]

    Pachos J K, Knight P L 2003Phys. Rev. Lett. 91 107902

    [9]

    Morsch O, Müller J H, Cristiani M, Ciampini D, Arimondo E 2001Phys. Rev. Lett. 87 140402

    [10]

    Bhattacherjee A B, Pietrzyk M 2008Cent. Eur. J. Phys. 6 26

    [11]

    Choi D I, Niu Q 1999Phys. Rev. Lett. 82 2022

    [12]

    Wu B, Niu Q 2001Phys. Rev. A 64061603(R)

    [13]

    Cristiani M, O Morsch, Müller J H, Ciampini D, E Arimondo 2002 Phys. Rev. A 65 063612

    [14]

    Liu J, Fu L B, Ou B Y, Chen S G, Choi D I, Wu B, Niu Q 2002 Phys. Rev. A 66023404

    [15]

    Choi D I, Niu Q 2003Phys. Lett. A 318, 558

    [16]

    Trombettoni A, Smerzi A 2001Phys. Rev. Lett. 86 2353

    [17]

    Berg-Sørensen K, Mølmer K 1998Phys. Rev. A 58 1480

    [18]

    Holthaus M 2000J. Opt. B: Quantum Semiclassical Opt. 2 589

    [19]

    Cerimele M M, Chiofalo M L, Pistella F, Succi S, Tosi M P 2000Phys. Rev. E 62 1382

    [20]

    Scott R G, Martin A M, Fromhold T M, Bujkiewicz S, Sheard F W, Leadbeater M 2003 Phys. Rev. Lett. 90110404

    [21]

    Filho V S, Gammal A, Frederico T, Tomio L 2000Phys. Rev. A 62 033605(R)

    [22]

    Hai W H, Lee C H, Chong G S, Shi L 2002Phys. Rev. E 66 026202

    [23]

    Li F, Shu W X, Jiang J G, Luo H L, Ren Z Z 2007Eur. Phys. J. D 41 355

    [24]

    Li F, Shu W X, Luo H L, Ren Z Z 2007Chin. Phys. 16 650

    [25]

    Li F, Ren Z Z, Luo H L, Shu W X, Wu Q 2007Commun. Theor. Phys. 48 107

    [26]

    Li F, Zhang D X, Li W B 2011Acta Phys. Sin. 60 120304(in Chinese) [李飞,张冬霞,李文斌2011物理学报60120304]

    [27]

    Li F, Zhang D X, Rong S G, Xu Y 2013J. Exp. Theor. Phys. 117 800

    [28]

    Li F, He Z J, Li W W 2023Commun. Theor. Phys. 75 035501

    [29]

    Li F, Li W W, He Z J 2023Rom. J. Phys. 68 103

    [30]

    Chong G S, Hai W H, Xie Q T 2004Phys. Rev. E 70 036213

    [31]

    Wang G F, Fu L B, Zhao H, Liu J 2005 Acta.Phys.Sin. 545003(in Chinese) [王冠芳、傅立斌、赵鸿、刘杰2005物理学报545003]

    [32]

    Zhu Q Q, Hai W H, Rong S G 2009 Phys. Rev. E 80016203

    [33]

    Wang L, Liu J S, Li J, Zhou X L, Chen X R, Liu C F, Liu W M 2020Acta Phys. Sin. 69010303(in Chinese) [王力, 刘静思,李吉, 周晓林, 陈向荣, 刘超飞, 刘伍明2020物理学报69010303]

    [34]

    Wang Q Q, Zhou Y S, Wang J, Fan X B, Shao K H, Zhao Y X, Song Y, Shi Y R 2023Acta Phys. Sin. 69010303(in Chinese) [王青青, 周玉珊, 王静, 樊小贝, 邵凯花, 赵月星, 宋燕, 石玉仁2023物理学报72 10030

    [35]

    Ruprecht P A, Edwards M, Burnett K, Clark C W 1996Phys. Rev. A 54 4178

    [36]

    Denschlag J H Simsarian, J E, Häffner H, McKenzie C, Browaeys A, Cho D, Helmerson K, Rolston S L, Phillips W D 2002J. Phys. B 35 3095

    [37]

    Mellish A S, Duffy G, McKenzie C, Geursen R, Wilson A C 2003Phys. Rev. A 68 051601(R)

    [38]

    Fallani L, Cataliotti F S, Catani J, Fort C, Modugno M, Zawada M, Inguscio M 2003 Phys. Rev. Lett. 91240405

    [39]

    Kagan Y, Surkov E L, Shlyapnikov G V 1997Phys. Rev. Lett. 792604

    [40]

    Cornish S L, Claussen N R, Roberts J L, Cornell E A, Wieman C E 2000ibid. 851795

    [41]

    Kevrekidis P G, Theocharis G, Frantzeskakis D J, Malomed B A 2004Phys. Rev. Lett. 90 230401;

    [42]

    Theocharis G, Schmelcher P, Kevrekidis P G, Frantzeskakis D J 2005Phys. Rev. A 72 033614

    [43]

    Abdullaev F Kh, Garnier J 2005 Phys. Rev. A 72 061605(R)

    [44]

    He J R, Li H M 2011Phys. Rev. E 83 066607

    [45]

    Avelar A T, Bazeia D, Cardoso WB 2009Phys. Rev. A 79 025602(R)

    [46]

    Wang D S, Hu X H, Liu W M 2010Phys. Rev. A 82 023612

    [47]

    Beitia J B, García V M P, Vekslerchik V, Konotop V V 2008Phys. Rev. Lett. 100 164102

    [48]

    Arroyo Meza L E, de Souza Dutra A, Hott M B 2012Phys. Rev. E 86 026605

    [49]

    Arroyo Meza L E, Souza Dutra A de, Hott M B 2013Phys. Rev. E 88 053202

    [50]

    Cardoso W B, Leão S A, Avelar A T, Bazeia D, Hussein M S 2010Phys. Lett. A 374 4594

    [51]

    Wang D S, Song S W, Xiong B, Liu W M 2011Phys. Rev. A 84 053607

    [52]

    Wang D S, Song S W, Liu W M 2012 Journal of Physics: Conference Series 400 012078

    [53]

    He J R, Yi L 2014Phys. Lett. A 378 1085

    [54]

    Rong S G, Hai W H, Xie Q T, Zhong H H 2012 Chaos 22033109

    [55]

    Parker N G, Proukakis N P, Barenghi C F, Adams C S 2004Phys. Rev. Lett. 92 160403; Parker N G, Proukakis N P, Barenghi C F, Adams C S 2004J. Phys. B 37 175

    [56]

    Proukakis N P, Parker N G, Barenghi C F, Adams C S 2004Phys. Rev. Lett. 93 130408

    [57]

    Gardiner S A, Jaksch D, Dum R, Cirac J I, P. Zoller 2000Phys. Rev. A 62 023612

    [58]

    Machholm M, Pethick CJ, Smith H 2003 Phys. Rev. A 67 053613

    [59]

    Goldstein E V, Meystre P 1999Phys. Rev. A 59 1509

    [60]

    Goldstein E V, Meystre P 1999 Phys. Rev. A 59, 3896

    [61]

    Ling H Y 2001Phys. Rev. A 65 013608

    [62]

    Liu S K, Liu S D 2012Nonlinear Equations in Physics (2nd edition) (Beijing: Peking University Press) p68(in Chinese) [刘式适,刘式达2012物理学中的非线性方程(第二版)(北京:北京大学出版社)第68页]

    [63]

    Li F, Zhou B J, Shu W X, Luo H L, Huang Z Y, Tian L 2008Eur. Phys. J. D 5075

    [64]

    Stavans J, Heslot F, Libchaber A 1985Phys. Rev. Lett. 55 596

    [65]

    Bishop A R, Forest M G, McLaughlin D W, Overman II E A 1986 Physica D 23 293

  • [1] 苏斌斌, 陈建军, 吴正茂, 夏光琼. 混沌光注入垂直腔面发射激光器混沌输出的时延和带宽特性. 物理学报, doi: 10.7498/aps.66.244206
    [2] 陈海军. 变分法研究二维光晶格中玻色-爱因斯坦凝聚的调制不稳定性. 物理学报, doi: 10.7498/aps.64.054702
    [3] 农春选, 李明, 陈翠玲. Ξ型三能级原子玻色-爱因斯坦凝聚体单模光场系统中双模原子激光的压缩性质. 物理学报, doi: 10.7498/aps.63.043202
    [4] 李明, 陈翠玲. 二能级原子玻色-爱因斯坦凝聚体与双模光场相互作用系统中原子激光的压缩性质. 物理学报, doi: 10.7498/aps.63.043201
    [5] 丁虎, 严巧赟, 陈立群. 轴向加速运动黏弹性梁受迫振动中的混沌动力学. 物理学报, doi: 10.7498/aps.62.200502
    [6] 沈壮志, 林书玉. 声场中气泡运动的混沌特性. 物理学报, doi: 10.7498/aps.60.104302
    [7] 宋立军, 严冬, 刘烨. 玻色-爱因斯坦凝聚系统的量子Fisher信息与混沌. 物理学报, doi: 10.7498/aps.60.120302
    [8] 李飞, 张冬霞, 李文斌. 玻色-爱因斯坦凝聚系统中原子的空间混沌分布. 物理学报, doi: 10.7498/aps.60.120304
    [9] 赵建刚, 孙长勇, 梁宝龙, 苏杰. 虚光场对玻色-爱因斯坦凝聚体与二项式光场相互作用系统中光场压缩性质的影响. 物理学报, doi: 10.7498/aps.58.4635
    [10] 严冬, 宋立军, 陈殿伟. 两分量玻色-爱因斯坦凝聚系统的自旋压缩. 物理学报, doi: 10.7498/aps.58.3679
    [11] 时培明, 刘 彬, 侯东晓. 一类相对转动非线性动力系统的混沌运动. 物理学报, doi: 10.7498/aps.57.1321
    [12] 陈文钦, 海文华, 宋建文. 双δ激光脉冲作用下Paul阱中单离子的规则与混沌运动. 物理学报, doi: 10.7498/aps.57.1608
    [13] 王海雷, 杨世平. 三势阱中玻色-爱因斯坦凝聚的开关特性. 物理学报, doi: 10.7498/aps.57.4700
    [14] 房永翠, 杨志安, 杨丽云. 对称双势阱玻色-爱因斯坦凝聚系统在周期驱动下的动力学相变及其量子纠缠熵表示. 物理学报, doi: 10.7498/aps.57.661
    [15] 王志霞, 张喜和, 沈 柯. 玻色-爱因斯坦凝聚中的混沌反控制. 物理学报, doi: 10.7498/aps.57.7586
    [16] 房永翠, 杨志安. 玻色-爱因斯坦凝聚体系中的混沌隧穿行为. 物理学报, doi: 10.7498/aps.57.7438
    [17] 陈文钦, 海文华, 李 辉, 马志英. 脉冲式棘齿势场作用下囚禁离子的规则与混沌运动. 物理学报, doi: 10.7498/aps.56.1305
    [18] 余学才, 叶玉堂, 程 琳. 势阱中玻色-爱因斯坦凝聚气体的势场有效性和粒子数极限判据. 物理学报, doi: 10.7498/aps.55.551
    [19] 罗诗裕, 谭永明, 邵明珠, 韦洛霞, 邓立虎. 沟道效应的运动阻尼与系统走向混沌的临界特征. 物理学报, doi: 10.7498/aps.53.1157
    [20] 周 明, 方家元, 黄春佳. 相互作用原子玻色-爱因斯坦凝聚体诱导的光场压缩效应. 物理学报, doi: 10.7498/aps.52.1916
计量
  • 文章访问数:  35
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-18

/

返回文章
返回