搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁阱中超冷玻色气体临界行为的观测

王兵 朱强 熊德智 吕宝龙

引用本文:
Citation:

磁阱中超冷玻色气体临界行为的观测

王兵, 朱强, 熊德智, 吕宝龙

Observation of critical behavior of ultra-cold Bose gas in a magnetic trap

Wang Bing, Zhu Qiang, Xiong De-Zhi, Lü Bao-Long
PDF
导出引用
  • 超冷玻色气体为研究量子临界现象提供了一个非常干净的实验系统. 弱相互作用下的三维玻色气体的临界行为与4He发生超流相变时的临界行为类似, 都属于三维XY型普适类. 从正常流体到超流的量子相变过程中, 系统会经历一个从无序相到长程有序相的转变; 而在相变点附近, 系统参量会表现出一些奇点的特征. 本文从实验上观测到了静磁阱中超冷87Rb玻色气体在凝聚体相变温度Tc附近的临界行为. 原子气体从静磁阱中释放, 经过30 ms的自由飞行后, 通过吸收成像得到原子气体的动量分布; 然后从中扣除热原子气体的动量分布, 提取出空间上处于临界区域内的原子气体动量分布, 并对不同温度下的动量分布半高宽进行统计. 统计结果显示: 在非常接近相变温度Tc时, 动量分布的半高宽突然减小, 表现出十分明显的奇点行为.
    Quantum criticality emerges when the collective fluctuations of matter undergo a continuous phase transition at zero temperature and has been a research focus in conventional condensed-matter physics over the past several decades. In the quantum critical regime, the exotic and universal properties are expected. These properties are independent of the microscopic details of the system, but depend only on a few general properties of the system, such as its dimensionality and the symmetry of the order parameter. The research of quantum criticality can not only help us to understand quantum phase transitions, but also provide a novel route to new material design and discovery.Ultracold bosonic gases have provided a clean system for studying the quantum critical phenomena. The critical behavior of a weakly interacting three-dimensional (3D) Bose gas should be identical to that of 4He at the superfluid transition, which belongs to the 3D XY universality class. From the normal fluid to the superfluid, the system undergoes a phase transition from completely disorder to long-range order, while in the vicinity of the phase transition point, the system parameters will show some singularity characteristics. In this paper, we observe the critical behavior of 87Rb Bose gas in a quadrupole-Ioffe configuration (QUIC) trap near the phase transition temperature Tc. A novel singularity behavior of the full width at half maximum of momentum distribution (FWHMMD) of atomic gas is discovered in the experiment. Prior to our experiment, we prepare a sample with 7.8105 87Rb atoms in the 5S1/2 |F=2, mF=2 state. Then the sample is held in a QUIC trap for a presetting period of time to control the temperature of atom sample precisely. During the holding time, the sample is heated up due to background gas collisions or fluctuations of the trap potential. In our experiment, the heating rate is deduced to be 0.3480.078 nK/ms from the absorption image. For a bosonic gas in a harmonic trap, critical gas can only cover a finite-size region due to a spatially varying density. We define the finite-size region as a critical region determined by the Ginzburg criterion. Then the FWHMMDs of atomic gas in the critical region are measured for different temperatures near the critical point. To this aim, we first extract the momentum distribution of atomic gas from the absorption image of the atomic clouds released from the QIUC trap after free expansion. Thus momentum distribution of atomic gas in the critical region can be extracted from the absorption image by subtracting the momentum distribution of thermal gas outside the critical region. According to the statistical results of the FWHMMD at different temperatures, we find that the FWHMMD suddenly reduces, thus revealing a very notable singularity behavior when the temperature is very close to the phase transition temperature Tc.
      通信作者: 熊德智, wssxdz@wipm.ac.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 11104322)资助的课题.
      Corresponding author: Xiong De-Zhi, wssxdz@wipm.ac.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11104322).
    [1]

    Huang K 1987 Statistical Mechanics (New York: John Wiley Sons) pp392-415

    [2]

    Coleman P, Schofield A J 2005 Nature 433 226

    [3]

    Sachdev S 2003 Rev. Mod. Phys. 75 913

    [4]

    Li Z, Zhou R, Zheng G Q {2015 Acta Phys. Sin. 64 217404 (in Chinese) [李政, 周睿, 郑国庆 2015 物理学报 64 217404]

    [5]

    Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039

    [6]

    Gasparini F M, Kimball M O, Mooney K P, Diaz-Avila M 2008 Rev. Mod. Phys. 80 1009

    [7]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [8]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969

    [9]

    Bradley C C, Sacket C A, Tollett J J, Hulet R G 1995 Phys. Rev. Lett. 75 1687

    [10]

    Khl M, Moritz H, Stferle T, Schori C, Esslinger T 2005 J. Low. Temp. Phys. 138 635

    [11]

    Polkovnikov A, Altman E, Demler E 2006 Proc. Natl. Acad. Sci. U.S.A 103 6125

    [12]

    Hadzibabic Z, Kruger P, Cheneau M, Battelier B, Dalibard J 2006 Nature 441 1118

    [13]

    Bezett A, Blakie P B 2009 Phys. Rev. A 79 033611

    [14]

    Donner T, Ritter S, Bourdel T, Ottl A, Khl M, Esslinger T 2007 Science 315 1556

    [15]

    Xiong W, Zhou X J, Yue X G, Chen X Z, Wu B, Xiong H W 2013 Laser Phys. Lett. 10 125502

    [16]

    Sondhi S L, Girvin S M, Carini J P, Shahar D 1997 Rev. Mod. Phys. 69 315

    [17]

    Buckingham M J, Fairbank W M 1961 Progress in Low Temperature Physics (Vol. 3) (Amserdam: North-Holland) pp80-122

    [18]

    Feng M, Zhong Y P, Liu T, Yan L L, Yang W L, Twamley J, Wang H 2015 Nat. Commun. 6 7111

    [19]

    Damle K, Senthil T, Majumdar S N, Sachdev S 1996 Euro. Phys. Lett. 36 7

    [20]

    Giorgini S, Pitaevskii L P, Stringari S 1996 Phys. Rev. A 54 R4633

    [21]

    Pethick C J, Smith H 2008 Bose-Einstein Condensation in Dilute Gases (2nd Ed.) (New York: Cambridge University Press) pp21-28

    [22]

    L B L, Tan X Z, Wang B, Cao L J, Xiong H W 2010 Phys. Rev. A 82 053629

    [23]

    Mewes M O, Andrews M R, van Druten N J, Kurn D M, Durfee D S, Ketterle W 1996 Phys. Rev. Lett. 77 416

    [24]

    Ma S K 2000 Modern Theory of Critical Phenomena (New York: Westview Press) pp16-32

  • [1]

    Huang K 1987 Statistical Mechanics (New York: John Wiley Sons) pp392-415

    [2]

    Coleman P, Schofield A J 2005 Nature 433 226

    [3]

    Sachdev S 2003 Rev. Mod. Phys. 75 913

    [4]

    Li Z, Zhou R, Zheng G Q {2015 Acta Phys. Sin. 64 217404 (in Chinese) [李政, 周睿, 郑国庆 2015 物理学报 64 217404]

    [5]

    Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039

    [6]

    Gasparini F M, Kimball M O, Mooney K P, Diaz-Avila M 2008 Rev. Mod. Phys. 80 1009

    [7]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [8]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969

    [9]

    Bradley C C, Sacket C A, Tollett J J, Hulet R G 1995 Phys. Rev. Lett. 75 1687

    [10]

    Khl M, Moritz H, Stferle T, Schori C, Esslinger T 2005 J. Low. Temp. Phys. 138 635

    [11]

    Polkovnikov A, Altman E, Demler E 2006 Proc. Natl. Acad. Sci. U.S.A 103 6125

    [12]

    Hadzibabic Z, Kruger P, Cheneau M, Battelier B, Dalibard J 2006 Nature 441 1118

    [13]

    Bezett A, Blakie P B 2009 Phys. Rev. A 79 033611

    [14]

    Donner T, Ritter S, Bourdel T, Ottl A, Khl M, Esslinger T 2007 Science 315 1556

    [15]

    Xiong W, Zhou X J, Yue X G, Chen X Z, Wu B, Xiong H W 2013 Laser Phys. Lett. 10 125502

    [16]

    Sondhi S L, Girvin S M, Carini J P, Shahar D 1997 Rev. Mod. Phys. 69 315

    [17]

    Buckingham M J, Fairbank W M 1961 Progress in Low Temperature Physics (Vol. 3) (Amserdam: North-Holland) pp80-122

    [18]

    Feng M, Zhong Y P, Liu T, Yan L L, Yang W L, Twamley J, Wang H 2015 Nat. Commun. 6 7111

    [19]

    Damle K, Senthil T, Majumdar S N, Sachdev S 1996 Euro. Phys. Lett. 36 7

    [20]

    Giorgini S, Pitaevskii L P, Stringari S 1996 Phys. Rev. A 54 R4633

    [21]

    Pethick C J, Smith H 2008 Bose-Einstein Condensation in Dilute Gases (2nd Ed.) (New York: Cambridge University Press) pp21-28

    [22]

    L B L, Tan X Z, Wang B, Cao L J, Xiong H W 2010 Phys. Rev. A 82 053629

    [23]

    Mewes M O, Andrews M R, van Druten N J, Kurn D M, Durfee D S, Ketterle W 1996 Phys. Rev. Lett. 77 416

    [24]

    Ma S K 2000 Modern Theory of Critical Phenomena (New York: Westview Press) pp16-32

  • [1] 张鹏, 朴红光, 张英德, 黄焦宏. 钙钛矿锰氧化物的磁相变临界行为及磁热效应研究进展. 物理学报, 2021, 70(15): 157501. doi: 10.7498/aps.70.20210097
    [2] 苑轶, 李英龙, 王强, 刘铁, 高鹏飞, 赫冀成. 强磁场对Mn-Sb包晶合金相变及凝固组织的影响. 物理学报, 2013, 62(20): 208106. doi: 10.7498/aps.62.208106
    [3] 高韶华, 王玉霞, 王宏伟, 袁帅. KAg4I5-AgI复合体系的电导率研究. 物理学报, 2011, 60(8): 086601. doi: 10.7498/aps.60.086601
    [4] 周志东, 张春祖, 张颖. 外延铁电薄膜相变温度的尺寸效应. 物理学报, 2010, 59(9): 6620-6625. doi: 10.7498/aps.59.6620
    [5] 宋学平, 张永光, 罗晓婧, 徐玲芳, 曹万强, 杨昌平. (1-x)(K0.5Na0.5)NbO3-xSrTiO3陶瓷的弛豫铁电性能. 物理学报, 2009, 58(7): 4980-4986. doi: 10.7498/aps.58.4980
    [6] 祁美兰, 贺红亮, 晏石林. 动态拉伸加载下高纯铝破坏的临界行为. 物理学报, 2007, 56(10): 5965-5968. doi: 10.7498/aps.56.5965
    [7] 朱 骏, 卢网平, 刘秋朝, 毛翔宇, 惠 荣, 陈小兵. La掺杂SrBi4Ti4O15铁电材料性能研究. 物理学报, 2003, 52(6): 1524-1528. doi: 10.7498/aps.52.1524
    [8] 吴顺光, 丁晓玲, 马明全, 殷岳才, 牛建军, 屈世显, 何大韧. 一个张弛振子的超临界子区域. 物理学报, 1999, 48(12): 2162-2168. doi: 10.7498/aps.48.2162
    [9] 高瞻, 王振林, 徐坚宏. 半无限无规场混合伊辛自旋系统的临界行为. 物理学报, 1997, 46(10): 2029-2035. doi: 10.7498/aps.46.2029
    [10] 范钦梁, 张书东, 丁鄂江. 体温计模型的临界行为. 物理学报, 1996, 45(4): 545-555. doi: 10.7498/aps.45.545
    [11] 秦晓岿, 石兢, 陈鸿, 田明亮, 田德诚. K0.3MoO3和Tl0.3MoO3派尔斯相变临界行为的比热研究. 物理学报, 1996, 45(6): 1033-1038. doi: 10.7498/aps.45.1033
    [12] 欧发, 邓文基. 光学双稳性临界点的相变行为. 物理学报, 1990, 39(6): 90-97. doi: 10.7498/aps.39.90
    [13] 唐坤发, 胡嘉桢. 伊辛模型的四分支临界面及其临界行为. 物理学报, 1988, 37(3): 515-519. doi: 10.7498/aps.37.515
    [14] 王广厚. 离子注入超导体PdCu中的氢分布和超导临界温度. 物理学报, 1984, 33(10): 1434-1436. doi: 10.7498/aps.33.1434
    [15] 张澄, 霍裕平. 三分子反应模型涨落的临界行为. 物理学报, 1983, 32(6): 750-761. doi: 10.7498/aps.32.750
    [16] 吉光达, 蔡俊道. 超导临界温度级数公式的应用. 物理学报, 1979, 28(6): 853-864. doi: 10.7498/aps.28.853
    [17] 蔡俊道, 吉光达, 吴杭生, 蔡建华, 龚昌德. 超导临界温度理论(Ⅲ). 物理学报, 1979, 28(3): 393-405. doi: 10.7498/aps.28.393
    [18] 龚昌德, 吴杭生, 蔡建华, 蔡俊道, 吉光达. 超导临界温度理论(Ⅱ). 物理学报, 1978, 27(1): 85-93. doi: 10.7498/aps.27.85
    [19] 蔡建华, 吴杭生. 超导临界温度严格公式的探讨. 物理学报, 1977, 26(6): 550-552. doi: 10.7498/aps.26.550
    [20] 吴杭生, 蔡建华, 龚昌德, 吉光达, 蔡俊道. 超导临界温度理论(Ⅰ). 物理学报, 1977, 26(6): 509-520. doi: 10.7498/aps.26.509
计量
  • 文章访问数:  4320
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-28
  • 修回日期:  2016-03-21
  • 刊出日期:  2016-06-05

/

返回文章
返回