搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高磁场下7Li原子的d波Feshbach共振

陈钟之 赖海健 齐燃 俞振华

引用本文:
Citation:

高磁场下7Li原子的d波Feshbach共振

陈钟之, 赖海健, 齐燃, 俞振华

D-wave Feshbach resonances in 7Li at high magnetic fields

CHEN Zhongzhi, LAI Haijian, QI Ran, YU Zhenhua
Article Text (iFLYTEK Translation)
PDF
导出引用
  • Feshbach共振是在特定外场下原子间发生共振相互作用的现象,主要表现为在共振附近量化低能散射性质的广义散射长度随外场趋于发散。近年来,随着冷原子物理的发展,s波及高分波的Feshbach共振相继被发现,为研究共振相互作用在多体物理中的效应提供了宝贵的途径。在本文中,基于多通道量子缺陷理论(MQDT),我们预言在1039.24 G和1055.64 G外磁场下,7Li原子间存在两个d波Feshbach共振,并确定了共振的各项参数,如共振宽度等。同时,我们估计了磁偶极矩相互作用对该两个共振的影响。我们的结果拓展了在7Li原子气体中研究d波共振相互作用的契机。
    Feshbach resonance is a fundamental phenomenon in cold atomic physics, where interatomic interactions can be precisely tuned to a scattering resonance by varying an external magnetic field. This effect plays a crucial role in ultracold atomic experiments, allowing the control of interaction strength, the formation of molecular bound states, and the realization of strongly correlated quantum systems. With the rapid development of cold atom experiments, numerous Feshbach resonances corresponding to different partial waves, such as s-wave, p-wave, and even higher partial wave ones, have been experimentally identified. While s-wave resonances have been widely utilized due to their isotropic nature and strong coupling, higher partial-wave resonances, including p-wave and d-wave resonances, offer unique opportunities for exploring anisotropic interactions and novel quantum phases. In this study, by the multichannel quantum defect theory (MQDT) method, we predict there are two d-wave Feshbach resonances in 7Li at 1039.24 G and 1055.64 G repectively. Physical properties of the two resonances, such as the resonance width and closed channel dimer energy, are presented. In addition, we optimized the computational parameters using the Nelder-Mead algorithm and investigated the possible resonance splitting induced by dipole-dipole interactions in higher partial waves. The presence of these d-wave resonances at high magnetic fields provides a new platform for investigating the interplay between higher-order partial wave interactions and quantum many-body effects. Our results provide opportunities to investigate the effects of higher partial wave Feshbach resonances at high magnetic fields. Our theoretical predictions thus serve as a useful reference for future experimental investigations into higher-order resonance phenomena in lithium and other atomic species.
  • [1]

    Schrödinger E 1926 Annalen der Physik 79734

    [2]

    Chu S, Bjorkholm J E, Ashkin A, Cable A 1986 Phys. Rev. Lett. 57314

    [3]

    Phillips W D, Metcalf H 1982 Phys. Rev. Lett. 48596

    [4]

    Moerdijk A J, Verhaar B J, Axelsson A 1995 Phys. Rev. A 514852

    [5]

    Feshbach H 1958 Annals of Physics 5357

    [6]

    Yao X C, Qi R, Liu X P, Wang X Q, Wang Y X, Wu Y P, Chen H Z, Zhang P, Zhai H, Chen Y A, Pan J W 2019 Nature Physics 15570. Number: 6 Publisher: Nature Publishing Group

    [7]

    Bartenstein M, Altmeyer A, Riedl S, Geursen R, Jochim S, Chin C, Denschlag J H, Grimm R, Simoni A, Tiesinga E, Williams C J, Julienne P S 2005 Phys. Rev. Lett. 94103201

    [8]

    Strecker K E, Partridge G B, Hulet R G 2003 Phys. Rev. Lett. 91080406

    [9]

    Regal C A, Ticknor C, Bohn J L, Jin D S 2003 Phys. Rev. Lett. 90053201

    [10]

    Zhang R, Yan S, Song H, Guo H, Ning C 2024 Nature Communications 153858

    [11]

    Schwartz I, Shimazaki Y, Kuhlenkamp C, Watanabe K, Taniguchi T, Kroner M, Imamoğlu A 2021 Science 374336

    [12]

    Koch J, Menon K, Cuestas E, Barbosa S, Lutz E, Fogarty T, Busch T, Widera A 2023 Nature 621723. Number: 7980 Publisher: Nature Publishing Group

    [13]

    Margulis B, Horn K P, Reich D M, Upadhyay M, Kahn N, Christianen A, van der Avoird A, Groenenboom G C, Meuwly M, Koch C P, Narevicius E 2023 Science 38077

    [14]

    Yudkin Y, Elbaz R, D’ Incao J P, Julienne P S, Khaykovich L 2024 Nature Communications 152127

    [15]

    Köhler T, Góral K, Julienne P S 2006 Rev. Mod. Phys. 781311

    [16]

    Bruun G M, Pethick C J 2004 Phys. Rev. Lett. 92140404

    [17]

    Aymar M, Greene C H, Luc-Koenig E 1996 Rev. Mod. Phys. 681015

    [18]

    Makrides C, Gao B 2014 Phys. Rev. A 89062718

    [19]

    Julienne P S, Hutson J M 2014 Phys. Rev. A 89052715

    [20]

    Stoof H T C, Koelman J M V A, Verhaar B J 1988 Phys. Rev. B 384688

    [21]

    Gao B 1998 Phys. Rev. A 581728

    [22]

    Cavagnero M J 1994 Phys. Rev. A 502841

    [23]

    Gao B 1999 Physical Review A 592778

    [24]

    Gao B, Tiesinga E, Williams C J, Julienne P S 2005 Phys. Rev. A 72042719

    [25]

    Gao B 2008 Phys. Rev. A 78012702

    [26]

    Gao B 2009 Phys. Rev. A 80012702

    [27]

    Gao B 2011 Phys. Rev. A 84022706

    [28]

    Góral K, Köhler T, Gardiner S A, Tiesinga E, Julienne P S 2004 Journal of Physics B: Atomic, Molecular and Optical Physics 373457

    [29]

    Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 821225

    [30]

    Gaebler J P, Stewart J T, Bohn J L, Jin D S 2007 Phys. Rev. Lett. 98200403

    [31]

    Weckesser P, Thielemann F, Wiater D, Wojciechowska A, Karpa L, Jachymski K, Tomza M, Walker T, Schaetz T 2021 Nature 600429

    [32]

    Fey C, Schmelcher P, Imamoglu A, Schmidt R 2020 Phys. Rev. B 101195417

    [33]

    Strecker K E, Partridge G B, Truscott A G, Hulet R G 2002 Nature 417150

    [34]

    Inouye S, Andrews M, Stenger J, Miesner H J, Stamper-Kurn D M, Ketterle W 1998 Nature 392151

    [35]

    Lagarias J C, Reeds J A, Wright M H, Wright P E 1998 SIAM Journal on optimization 9112

    [36]

    Pollack S E, Dries D, Junker M, Chen Y P, Corcovilos T A, Hulet R G 2009 Phys. Rev. Lett. 102090402

    [37]

    Moerdijk A J, Verhaar B J, Axelsson A 1995 Phys. Rev. A 514852

  • [1] 刘雪梅, 芮扬, 张亮, 武跃龙, 武海斌. 用于冷原子的高精度磁场锁定系统. 物理学报, doi: 10.7498/aps.71.20220399
    [2] 白净, 谢廷. 利用重归一化Numerov方法研究超冷双原子碰撞. 物理学报, doi: 10.7498/aps.71.20211308
    [3] 白净, 谢廷. 利用重归一化Numerov方法研究超冷双原子碰撞. 物理学报, doi: 10.7498/aps.70.20211308
    [4] 石悦然, 卢倬成, 王璟琨, 张威. 轨道Feshbach共振附近类碱土金属原子的杂质态问题. 物理学报, doi: 10.7498/aps.68.20181937
    [5] 刁鹏鹏, 邓书金, 李芳, 武海斌. 超冷费米气体的膨胀动力学研究新进展. 物理学报, doi: 10.7498/aps.68.20182293
    [6] 冷永刚, 王太勇, 郭 焱, 吴振勇. 双稳随机共振参数特性的研究. 物理学报, doi: 10.7498/aps.56.30
    [7] 林 敏, 黄咏梅. 基于振动共振的随机共振控制. 物理学报, doi: 10.7498/aps.56.6173
    [8] 武宏宇, 尹 澜. 超流费米气体相滑移时的密度分布. 物理学报, doi: 10.7498/aps.55.490
    [9] 冷永刚, 王太勇, 郭 焱, 汪文津, 胡世广. 级联双稳系统的随机共振特性. 物理学报, doi: 10.7498/aps.54.1118
    [10] 秦光戎, 龚德纯, 胡岗, 温孝东. 随机共振的模拟实验. 物理学报, doi: 10.7498/aps.41.360
    [11] 梁良, 王永昌, 刘学文. GaII能谱的多通道量子数亏损理论(MQDT)分析. 物理学报, doi: 10.7498/aps.39.11
    [12] 马锦秀, 徐至展. 共振自聚焦理论. 物理学报, doi: 10.7498/aps.36.1
    [13] 廖世强. 原子共振中的相位调制. 物理学报, doi: 10.7498/aps.28.124
    [14] 许伯威. KK和KK共振态. 物理学报, doi: 10.7498/aps.22.840
    [15] 武尚賢, 黄五羣, 许伯威. 关于Kπ共振态. 物理学报, doi: 10.7498/aps.22.961
    [16] 夏意诚. π-π P波共振的近似解. 物理学报, doi: 10.7498/aps.22.510
    [17] 葛墨林, 段一士. π-π共振态. 物理学报, doi: 10.7498/aps.22.724
    [18] 许伯威. K-π共振态. 物理学报, doi: 10.7498/aps.21.221
    [19] 葛墨林, 段一士. 关于π-π共振态. 物理学报, doi: 10.7498/aps.21.1903
    [20] 许伯威, 孔凡梅, 宫学惠. K—K共振态. 物理学报, doi: 10.7498/aps.20.1129
计量
  • 文章访问数:  150
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 上网日期:  2025-03-07

/

返回文章
返回