搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微型电子回旋共振离子源的全局模型

武文斌 彭士香 张艾霖 周海京 马腾昊 蒋耀湘 李凯 崔步坚 郭之虞 陈佳洱

引用本文:
Citation:

微型电子回旋共振离子源的全局模型

武文斌, 彭士香, 张艾霖, 周海京, 马腾昊, 蒋耀湘, 李凯, 崔步坚, 郭之虞, 陈佳洱

Global model of miniature electron cyclotron resonance ion source

Wu Wen-Bin, Peng Shi-Xiang, Zhang Ai-Lin, Zhou Hai-Jing, Ma Teng-Hao, Jiang Yao-Xiang, Li Kai, Cui Bu-Jian, Guo Zhi-Yu, Chen Jia-Er
PDF
HTML
导出引用
  • 微型电子回旋共振(electron cyclotron resonance, ECR)离子源在紧凑型离子注入机、小型中子管、微型离子推进器等领域有着十分广泛的应用. 为了深入认识微型ECR离子源的工作机理, 本文以北京大学自主研制的一款微型氘离子源作为研究对象, 以氢气和氘气放电形成的等离子体为例, 发展了一种基于粒子平衡方程的全局模型. 研究结果表明, 该离子源束流成分与离子源的运行气压和微波功率有着很强的依赖关系. 对于氢气放电等离子体, 微波功率低于100 W时, 离子源可以分别在低气压和高气压情况下获得离子比超过50%的$ {\text{H}}_2^ + $离子束和$ {\text{H}}_3^ + $离子束; 当微波功率高于100 W时, 可以在很宽的运行气压范围内, 获得质子比超过50%的束流. 因此, 提高微波功率是提高微型离子源质子比的关键. 对于氘气放电等离子体, 3种离子比例对运行气压和微波功率的依赖关系与氢气放电等离子体的规律基本一致. 但是在相同的运行条件下, D+比例比H+比例高10%—25%. 也就是说, 在微型氘离子源的测试和优化过程中, 可以利用氢气代替氘气进行实验, 并将质子比测量结果作为相同条件下氘离子比例的下限.
    Miniature electron cyclotron resonance (ECR) ion sources are widely used in compact ion implanters, miniature neutron tubes, and miniature ion thrusters. To understand the mechanism of miniature ECR ion source, a miniature deuterium ion source developed by Peking University is taken as the research object. In this work, a global model based on particle balance equations is developed for studying the hydrogen plasma and the deuterium plasma inside the miniature ECR source. The research results show that both the hydrogen discharge process and the deuterium discharge process of the ion source are strongly dependent on the gas pressure and microwave power. The calculated results show that high power is beneficial to increasing the proportion of H+(D+) ions, low pressure is helpful in augmenting the ratio of $ {\text{H}}_2^ + $($ {\text{D}}_2^ + $) ions, high pressure and low power are beneficial to enhancing the proportion of $ {\text{H}}_3^ + $($ {\text{D}}_3^ + $) ions. In addition, there is a large difference in ion proportion between hydrogen discharge and deuterium discharge. Under the same operating parameters, the proportion of D+ ions is 10%–25% higher than the proportion of H+ ions since the plasma density of deuterium discharge is higher than that of hydrogen plasma. Therefore, during the operation of miniature source, H2 gas, instead of D2 gas, can be used in experiment, and the proportion of D+ ions under the corresponding operating parameters can be estimated based on the proportion of H+ ions. Finally, the calculated results show that high microwave power is a prerequisite for achieving the high proportion of H+ (D+) ions. However, owing to the limitation of microwave coupling efficiency, the miniature ECR ion source cannot work when the microwave power is greater than 150 W, so that the H+ (D+) proportion cannot be further increased, thereby limiting its further applications in neutron sources, implanters, etc. Therefore, how to improve the microwave coupling efficiency has become one of the key research contents of the miniature ECR ion source. The global model proposed in this paper is helpful in understanding the physical process of the miniature ECR ion source, but there are also some shortcomings. Firstly, the effect of the secondary electron emission coefficient is not considered in the model, so it is impossible to study the influence of wall materials on ion proportion in detail. Secondly, the dissociation degree depends on the plasma measurements, and the error of plasma measurements in turn affect the accuracy of the model to a certain extent. In addition, only the hydrogen plasma model and deuterium plasma model are established in this work, based on which it is impossible to study the processes of other gas discharge plasmas. In the future, the above factors will be considered and the model will be further improved to establish a complete and self-consistent global model of the miniature ECR ion source.
      通信作者: 彭士香, sxpeng@pku.edu.cn
    • 基金项目: 国家自然科学基金专项基金(批准号: 12147144)、国家自然科学基金(批准号: 11775007, 11975036)和中国博士后科学基金(批准号: 2021M700506)资助的课题.
      Corresponding author: Peng Shi-Xiang, sxpeng@pku.edu.cn
    • Funds: Project supported by the Special Funds of the National Natural Science Foundation of China (Grant No. 12147144), the National Natural Science Foundation of China (Grant Nos. 11775007, 11975036), and the China Postdoctoral Science Foundation (Grant No. 2021M700506).
    [1]

    Gammino S, Celona L, Ciavola G, Maimone F, Mascali D 2010 Rev. Sci. Instrum. 81 02B313Google Scholar

    [2]

    丁俊章, 赵玉彬, 刘占稳, 赵红卫, 袁平, 曹云, 雷海亮, 张子民, 张雪珍, 张汶, 郭晓虹, 王辉, 冯玉成, 李锦玉, 马保华, 高级元, 宋沛, 李锡霞 2001 核技术 24 43Google Scholar

    Ding J Z, Zhao Y B, Liu Z W, Zhao H W, Yuan P, Cao Y, Lei H L, Zhang Z M, Zhang X Z, Zhang W, Guo X H, Wang H, Feng Y C, Li J Y, Ma B H, Gao J Y, Song P, Li X X 2001 Nucl. Tech. 24 43Google Scholar

    [3]

    Alonso J R, Calabretta L, Campo D, Celona L, Conrad J, Martinez R G, Johnson R, Labrecque F, Toups M H, Winklehner D, Winslow L 2014 Rev. Sci. Instrum. 85 02A742Google Scholar

    [4]

    崔保群, 李立强, 包轶文, 蒋渭生, 王荣文 2002 原子能科学技术 36 486Google Scholar

    Cui B Q, Li L Q, Bao Y W, Jiang W S, Wang R W 2002 Atomic Energy Science and Technology 36 486Google Scholar

    [5]

    Harrison S E, Voss L F, Torres A M, Frye C D, Shao Q, Nikolić R J 2017 J. Vat. Sci. Technol. A 35 061303Google Scholar

    [6]

    More S E, Dave J R, Makar P K, Bhoraskar S V, Premkumar S, Tomar G B, Mathe V L 2020 Appl. Surf. Sci. 506 144665Google Scholar

    [7]

    Kim W J, Ryu J, Im J, Kim S H, Kang S Y, Lee J H, Jo S H, Ha B K 2018 Mol. Genet. Genomics. 293 1169Google Scholar

    [8]

    李波, 刘华昌, 王云, 吴小磊, 李阿红, 瞿培华, 陈强, 樊梦旭, 巩克云, 欧阳华甫, 吴丛凤 2019 原子能科学技术 53 1656Google Scholar

    Li B, Liu H C, Wang Y, Wu X L, Li A H, Qu P H, Chen Q, Fan M X, Gong K Y, Ouyang H F, Wu C F 2019 Atomic Energy Science and Technology 53 1656Google Scholar

    [9]

    Jiang Y X, Peng S X, Wu W B, Ma T H, Zhang J F, Ren H T, Zhang T, Wen J M, Xu Y, Zhang A L, Sun J, Guo Z Y, Chen J E 2020 Rev. Sci. Instrum. 91 033319Google Scholar

    [10]

    Vainionpaa J H, Harris J L, Piestrup M A, Gary C K, Williams D L, Apodaca M D, Cremer J T, Ji Q, Ludewigt B A, Jones G 2013 AIP Conf. Proc. 1525 118Google Scholar

    [11]

    Fu S, Ding Z, Ke Y, Tian L 2020 IEEE T. Plasma. Sci. 48 676Google Scholar

    [12]

    Wen J M, Peng S X, Ren H T, Zhang T, Zhang J F, Wu W B, Sun J, Guo Z Y, Chen J E 2018 Chin. Phys. B 27 055204Google Scholar

    [13]

    Bogomolov S L, Bondarchenko A E, Efremov A A, Kostyukhov Y E, Kuzmenkov K I, Loginov V N, Pugachev D K, Fatkullin R D 2019 J. Instrum. 14 C01009Google Scholar

    [14]

    Ke Y J, Sun X F, Chen X K, Tian L C, Zhang T P, Zheng F M, Jia Y H, Jiang H C 2017 Plasma Sci. Technol. 19 095503Google Scholar

    [15]

    Yamamoto N, Chikaoka T, Masui H, Nakashima H, Takao Y, Kondo S 2006 In 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit California, America, July 9–12, 2006 p5177

    [16]

    Torii Y, Shimada M, Watanabe I 1992 Rev. Sci. Instrum. 63 2559Google Scholar

    [17]

    Ji Q 2011 AIP Conf. Proc. 1336 528Google Scholar

    [18]

    Baumgarten C, Barchetti A, Einenkel H, Goetz D, Schmelzbach P A 2011 Rev. Sci. Instrum. 82 053304Google Scholar

    [19]

    Fatkullin R, Bogomolov S, Kuzmenkov K, Efremov A 2018 EPJ Web of Conf. 177 08003Google Scholar

    [20]

    Chan C F, Burrell C F, Cooper W S 1983 J. Appl. Phys. 54 6119Google Scholar

    [21]

    Samuell C M, Corr C S 2016 Plasma Sources Sci. Technol. 25 015014Google Scholar

    [22]

    Zorat R, Goss J, Boilson D, Vender D 2000 Plasma Sources Sci. Technol. 9 161Google Scholar

    [23]

    Hollmann E M, Pigarov A Y 2002 Phys. Plasmas 9 4330Google Scholar

    [24]

    Ke J L, Liu Y G, Liu B L, Hu Y H, Liu M, Tang J, Zheng P, Li Y, Wu C L, Lou B C 2020 Instrum. Exp. Tech. 63 616Google Scholar

    [25]

    Svarnas P, Bacal M, Auvray P, Béchu S, Pelletier J 2006 Rev. Sci. Instrum. 77 03A512Google Scholar

    [26]

    Eguchi T, Sasao M, Shimabukuro Y, Ikemoto F, Kisaki M, Nakano H, Tsumori K, Wada M 2020 Rev. Sci. Instrum. 91 013508Google Scholar

    [27]

    Janev R K, Langer W D Jr, Evans K, Post D E 1987 Elementary Processes in Hydrogen-Helium Plasmas: Cross Sections and Reaction Rate Coefficients (Springer-Verlag Berlin Heidelberg) p1868

    [28]

    Huh S R, Kim N K, Jung B K, Chung K J, Hwang Y S, Kim G H 2015 Phys. Plasmas 22 033506Google Scholar

    [29]

    McNeely P, Dudin S V, Christ-Koch S, Fantz U, the NNBI Team 2009 Plasma Sources Sci. Technol. 18 014011Google Scholar

    [30]

    Godyak V A, Piejak R B, Alexandrovich B M 2002 Plasma Sources Sci. Technol. 11 525Google Scholar

    [31]

    Singh S B, Chand N, Pati D S 2009 Vacuum 83 372Google Scholar

    [32]

    Kimura T, Kasugai H 2010 J. Appl. Phys. 107 083308Google Scholar

    [33]

    Hjartarson A T, Thorsteinsson E G, Gudmundsson J T 2010 Plasma Sources Sci. Technol. 19 065008Google Scholar

    [34]

    Fantz U 2006 Plasma Sources Sci. Technol. 15 S137Google Scholar

    [35]

    Mazzaglia M, Castro G, Mascali D, Celona L, Neri L, Torrisi G, Gammino S, Reitano R, Naselli E 2019 Phys. Rev. Accel. Beams 22 053401Google Scholar

    [36]

    Wu W B, Ren H T, Peng S X, Xu Y, Wen J M, Sun J, Zhang A L, Zhang T, Zhang J F, Chen J E 2017 Chin. Phys. B 26 095204Google Scholar

    [37]

    Koga M, Yonesu A, Kawai Y 2003 Surf. Coat. Tech. 171 216Google Scholar

    [38]

    Reuben B G, Friedman L 1962 J. Chem. Phys. 37 1636Google Scholar

    [39]

    Dandl R A, Guest G E 1991 J. Vac. Sci. Technol. A 9 3119Google Scholar

    [40]

    Fu S L, Chen J F, Hu S J, Wu X Q, Lee Y, Fan S L 2006 Plasma Sources Sci. Technol. 15 187Google Scholar

    [41]

    Yoshida Y 1992 Appl. Phys. Lett. 61 1733Google Scholar

    [42]

    Zhang M, Peng S X, Ren H T, Song Z Z, Yuan Z X, Zhou Q F, Lu P N, Xu R, Zhao J, Yu J X, Chen J E, Guo Z Y, Lu Y R 2010 Rev. Sci. Instrum. 81 02B715Google Scholar

    [43]

    Wu W B, Peng S X, Ren H T, Xu Y, Wen J M, Zhang A L, Zhang T, Zhang J F, Sun J, Guo Z Y, Chen J E 2018 AIP Conf. Proc. 2011 020004Google Scholar

    [44]

    Wu Y 2009 Ph. D. Dissertation (Berkeley: UC Berkeley)

    [45]

    Wu W B, Zhang A L, Peng S X, Ma T H, Jiang Y X, Li K, Zhang J F, Zhang T, Wen J M, Xu Y, Guo Z Y, Chen J E 2020 Vacuum 182 109744Google Scholar

    [46]

    Fantz U, Falter H, Franzen P, Wünderlich D, Berger M, Lorenz A, Kraus W, McNeely P, Riedl R, Speth E 2006 Nucl. Fusion 46 S297Google Scholar

    [47]

    Child C D 1911 Phys. Rev. 32 492Google Scholar

    [48]

    Langmuir I 1913 Phys. Rev. 2 450Google Scholar

    [49]

    Xu Y, Peng S X, Ren H T, Zhang A L, Zhang T, Xu Y, Zhang J F, Wen J M, Wu W B, Guo Z Y, Chen J E 2017 Chin. Phys. B 26 085203Google Scholar

    [50]

    Miracoli R, Celona L, Castro G, Mascali D, Gammino S, Lanaia D, Giugno R Di, Serafno T, Ciavola G 2012 Rev. Sci. Instrum. 83 02A305Google Scholar

  • 图 1  北京大学微型ECR离子源结构示意图

    Fig. 1.  Schematic diagram of the miniaturized ECR ion source at Peking University.

    图 2  离子源内氢等离子体主要碰撞过程的速率系数[27]

    Fig. 2.  Rate coefficients of the main processes of hydrogen plasma inside the ion source[27].

    图 3  中性气体密度与电子温度关系曲线

    Fig. 3.  Equilibrium relationships between the neutral gas density and the electron temperature.

    图 4  电子温度与运行气压和微波功率的关系

    Fig. 4.  Electron temperature as functions of gas pressure and microwave power.

    图 5  电子密度与运行气压和微波功率的关系 (a) 氢气放电等离子体; (b) 氘气放电等离子体

    Fig. 5.  Electron density as functions of gas pressure and microwave power: (a) H2 plasma; (b) D2 plasma.

    图 6  解离度与运行气压和微波功率的关系 (a) 氢气放电等离子体; (b) 氘气放电等离子体

    Fig. 6.  Dissociation degree as functions of gas pressure and microwave power: (a) H2 plasma; (b) D2 plasma.

    图 7  不同运行气压下, H+, $ {\text{H}}_2^ + $, $ {\text{H}}_3^ +$比例

    Fig. 7.  H+, $ {\text{H}}_2^ + $, $ {\text{H}}_3^ + $ ion fractions for different gas pressure.

    图 8  离子比随运行气压和微波功率的变化曲线 (a) H+; (b) $ {\text{H}}_2^ + $; (c) $ {\text{H}}_3^ + $

    Fig. 8.  Ion fractions as functions of gas pressure and microwave power: (a) H+; (b) $ {\text{H}}_2^ + $; (c) $ {\text{H}}_3^ + $.

    图 9  微型ECR离子源工作状态区与H+, $ {\text{H}}_2^ + $, $ {\text{H}}_3^ + $离子占优区

    Fig. 9.  Operating state region of the miniaturized ECR ion source and H+, $ {\text{H}}_2^ + $, $ {\text{H}}_3^ + $ ion dominant region.

    图 10  不同运行气压和微波功率条件下, 氘气和氢气放电的离子比对照 (a) D+; (b) $ {\text{D}}_2^ + $; (c) $ {\text{D}}_3^ + $; (d) H+; (e) $ {\text{H}}_2^ + $; (f) $ {\text{H}}_3^ + $

    Fig. 10.  Comparison of ion fractions for D2 and H2 plasma at different gas pressure and microwave power: (a) D+; (b) $ {\text{D}}_2^ + $; (c) $ {\text{D}}_3^ + $; (d) H+; (e) $ {\text{H}}_2^ + $; (f) $ {\text{H}}_3^ + $.

    图 11  不同运行气压和微波功率条件下, 氘气放电和氢气放电的离子比差值 (a) Δ [D+–H+]; (b) Δ [$ {\text{D}}_2^ + $$ {\text{H}}_2^ + $]; (c) Δ [$ {\text{D}}_3^ + $$ {\text{H}}_3^ + $]

    Fig. 11.  The difference of ion fraction between D2 plasma and H2 plasma at different gas pressure and microwave power: (a) Δ [D+–H+]; (b) Δ [$ {\text{D}}_2^ + $$ {\text{H}}_2^ + $]; (c) Δ [$ {\text{D}}_3^ + $$ {\text{H}}_3^ + $].

  • [1]

    Gammino S, Celona L, Ciavola G, Maimone F, Mascali D 2010 Rev. Sci. Instrum. 81 02B313Google Scholar

    [2]

    丁俊章, 赵玉彬, 刘占稳, 赵红卫, 袁平, 曹云, 雷海亮, 张子民, 张雪珍, 张汶, 郭晓虹, 王辉, 冯玉成, 李锦玉, 马保华, 高级元, 宋沛, 李锡霞 2001 核技术 24 43Google Scholar

    Ding J Z, Zhao Y B, Liu Z W, Zhao H W, Yuan P, Cao Y, Lei H L, Zhang Z M, Zhang X Z, Zhang W, Guo X H, Wang H, Feng Y C, Li J Y, Ma B H, Gao J Y, Song P, Li X X 2001 Nucl. Tech. 24 43Google Scholar

    [3]

    Alonso J R, Calabretta L, Campo D, Celona L, Conrad J, Martinez R G, Johnson R, Labrecque F, Toups M H, Winklehner D, Winslow L 2014 Rev. Sci. Instrum. 85 02A742Google Scholar

    [4]

    崔保群, 李立强, 包轶文, 蒋渭生, 王荣文 2002 原子能科学技术 36 486Google Scholar

    Cui B Q, Li L Q, Bao Y W, Jiang W S, Wang R W 2002 Atomic Energy Science and Technology 36 486Google Scholar

    [5]

    Harrison S E, Voss L F, Torres A M, Frye C D, Shao Q, Nikolić R J 2017 J. Vat. Sci. Technol. A 35 061303Google Scholar

    [6]

    More S E, Dave J R, Makar P K, Bhoraskar S V, Premkumar S, Tomar G B, Mathe V L 2020 Appl. Surf. Sci. 506 144665Google Scholar

    [7]

    Kim W J, Ryu J, Im J, Kim S H, Kang S Y, Lee J H, Jo S H, Ha B K 2018 Mol. Genet. Genomics. 293 1169Google Scholar

    [8]

    李波, 刘华昌, 王云, 吴小磊, 李阿红, 瞿培华, 陈强, 樊梦旭, 巩克云, 欧阳华甫, 吴丛凤 2019 原子能科学技术 53 1656Google Scholar

    Li B, Liu H C, Wang Y, Wu X L, Li A H, Qu P H, Chen Q, Fan M X, Gong K Y, Ouyang H F, Wu C F 2019 Atomic Energy Science and Technology 53 1656Google Scholar

    [9]

    Jiang Y X, Peng S X, Wu W B, Ma T H, Zhang J F, Ren H T, Zhang T, Wen J M, Xu Y, Zhang A L, Sun J, Guo Z Y, Chen J E 2020 Rev. Sci. Instrum. 91 033319Google Scholar

    [10]

    Vainionpaa J H, Harris J L, Piestrup M A, Gary C K, Williams D L, Apodaca M D, Cremer J T, Ji Q, Ludewigt B A, Jones G 2013 AIP Conf. Proc. 1525 118Google Scholar

    [11]

    Fu S, Ding Z, Ke Y, Tian L 2020 IEEE T. Plasma. Sci. 48 676Google Scholar

    [12]

    Wen J M, Peng S X, Ren H T, Zhang T, Zhang J F, Wu W B, Sun J, Guo Z Y, Chen J E 2018 Chin. Phys. B 27 055204Google Scholar

    [13]

    Bogomolov S L, Bondarchenko A E, Efremov A A, Kostyukhov Y E, Kuzmenkov K I, Loginov V N, Pugachev D K, Fatkullin R D 2019 J. Instrum. 14 C01009Google Scholar

    [14]

    Ke Y J, Sun X F, Chen X K, Tian L C, Zhang T P, Zheng F M, Jia Y H, Jiang H C 2017 Plasma Sci. Technol. 19 095503Google Scholar

    [15]

    Yamamoto N, Chikaoka T, Masui H, Nakashima H, Takao Y, Kondo S 2006 In 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit California, America, July 9–12, 2006 p5177

    [16]

    Torii Y, Shimada M, Watanabe I 1992 Rev. Sci. Instrum. 63 2559Google Scholar

    [17]

    Ji Q 2011 AIP Conf. Proc. 1336 528Google Scholar

    [18]

    Baumgarten C, Barchetti A, Einenkel H, Goetz D, Schmelzbach P A 2011 Rev. Sci. Instrum. 82 053304Google Scholar

    [19]

    Fatkullin R, Bogomolov S, Kuzmenkov K, Efremov A 2018 EPJ Web of Conf. 177 08003Google Scholar

    [20]

    Chan C F, Burrell C F, Cooper W S 1983 J. Appl. Phys. 54 6119Google Scholar

    [21]

    Samuell C M, Corr C S 2016 Plasma Sources Sci. Technol. 25 015014Google Scholar

    [22]

    Zorat R, Goss J, Boilson D, Vender D 2000 Plasma Sources Sci. Technol. 9 161Google Scholar

    [23]

    Hollmann E M, Pigarov A Y 2002 Phys. Plasmas 9 4330Google Scholar

    [24]

    Ke J L, Liu Y G, Liu B L, Hu Y H, Liu M, Tang J, Zheng P, Li Y, Wu C L, Lou B C 2020 Instrum. Exp. Tech. 63 616Google Scholar

    [25]

    Svarnas P, Bacal M, Auvray P, Béchu S, Pelletier J 2006 Rev. Sci. Instrum. 77 03A512Google Scholar

    [26]

    Eguchi T, Sasao M, Shimabukuro Y, Ikemoto F, Kisaki M, Nakano H, Tsumori K, Wada M 2020 Rev. Sci. Instrum. 91 013508Google Scholar

    [27]

    Janev R K, Langer W D Jr, Evans K, Post D E 1987 Elementary Processes in Hydrogen-Helium Plasmas: Cross Sections and Reaction Rate Coefficients (Springer-Verlag Berlin Heidelberg) p1868

    [28]

    Huh S R, Kim N K, Jung B K, Chung K J, Hwang Y S, Kim G H 2015 Phys. Plasmas 22 033506Google Scholar

    [29]

    McNeely P, Dudin S V, Christ-Koch S, Fantz U, the NNBI Team 2009 Plasma Sources Sci. Technol. 18 014011Google Scholar

    [30]

    Godyak V A, Piejak R B, Alexandrovich B M 2002 Plasma Sources Sci. Technol. 11 525Google Scholar

    [31]

    Singh S B, Chand N, Pati D S 2009 Vacuum 83 372Google Scholar

    [32]

    Kimura T, Kasugai H 2010 J. Appl. Phys. 107 083308Google Scholar

    [33]

    Hjartarson A T, Thorsteinsson E G, Gudmundsson J T 2010 Plasma Sources Sci. Technol. 19 065008Google Scholar

    [34]

    Fantz U 2006 Plasma Sources Sci. Technol. 15 S137Google Scholar

    [35]

    Mazzaglia M, Castro G, Mascali D, Celona L, Neri L, Torrisi G, Gammino S, Reitano R, Naselli E 2019 Phys. Rev. Accel. Beams 22 053401Google Scholar

    [36]

    Wu W B, Ren H T, Peng S X, Xu Y, Wen J M, Sun J, Zhang A L, Zhang T, Zhang J F, Chen J E 2017 Chin. Phys. B 26 095204Google Scholar

    [37]

    Koga M, Yonesu A, Kawai Y 2003 Surf. Coat. Tech. 171 216Google Scholar

    [38]

    Reuben B G, Friedman L 1962 J. Chem. Phys. 37 1636Google Scholar

    [39]

    Dandl R A, Guest G E 1991 J. Vac. Sci. Technol. A 9 3119Google Scholar

    [40]

    Fu S L, Chen J F, Hu S J, Wu X Q, Lee Y, Fan S L 2006 Plasma Sources Sci. Technol. 15 187Google Scholar

    [41]

    Yoshida Y 1992 Appl. Phys. Lett. 61 1733Google Scholar

    [42]

    Zhang M, Peng S X, Ren H T, Song Z Z, Yuan Z X, Zhou Q F, Lu P N, Xu R, Zhao J, Yu J X, Chen J E, Guo Z Y, Lu Y R 2010 Rev. Sci. Instrum. 81 02B715Google Scholar

    [43]

    Wu W B, Peng S X, Ren H T, Xu Y, Wen J M, Zhang A L, Zhang T, Zhang J F, Sun J, Guo Z Y, Chen J E 2018 AIP Conf. Proc. 2011 020004Google Scholar

    [44]

    Wu Y 2009 Ph. D. Dissertation (Berkeley: UC Berkeley)

    [45]

    Wu W B, Zhang A L, Peng S X, Ma T H, Jiang Y X, Li K, Zhang J F, Zhang T, Wen J M, Xu Y, Guo Z Y, Chen J E 2020 Vacuum 182 109744Google Scholar

    [46]

    Fantz U, Falter H, Franzen P, Wünderlich D, Berger M, Lorenz A, Kraus W, McNeely P, Riedl R, Speth E 2006 Nucl. Fusion 46 S297Google Scholar

    [47]

    Child C D 1911 Phys. Rev. 32 492Google Scholar

    [48]

    Langmuir I 1913 Phys. Rev. 2 450Google Scholar

    [49]

    Xu Y, Peng S X, Ren H T, Zhang A L, Zhang T, Xu Y, Zhang J F, Wen J M, Wu W B, Guo Z Y, Chen J E 2017 Chin. Phys. B 26 085203Google Scholar

    [50]

    Miracoli R, Celona L, Castro G, Mascali D, Gammino S, Lanaia D, Giugno R Di, Serafno T, Ciavola G 2012 Rev. Sci. Instrum. 83 02A305Google Scholar

  • [1] 李鑫, 曾明, 刘辉, 宁中喜, 于达仁. 应用于电推进的碘工质电子回旋共振等离子体源. 物理学报, 2023, 72(22): 225202. doi: 10.7498/aps.72.20230785
    [2] 付瑜亮, 杨涓, 王彬, 胡展, 夏旭, 牟浩. 2 cm电子回旋共振离子源猝灭现象模拟. 物理学报, 2022, 71(8): 085203. doi: 10.7498/aps.71.20212151
    [3] 陈国华, 石科军, 储进科, 吴昊, 周池楼, 肖舒. 环形磁场金属等离子体源冷却流场的数值模拟与优化. 物理学报, 2021, 70(7): 075203. doi: 10.7498/aps.70.20201368
    [4] 张钰如, 高飞, 王友年. 低气压感性耦合等离子体源模拟研究进展. 物理学报, 2021, 70(9): 095206. doi: 10.7498/aps.70.20202247
    [5] 夏旭, 杨涓, 付瑜亮, 吴先明, 耿海, 胡展. 2 cm电子回旋共振离子推力器离子源中磁场对等离子体特性与壁面电流影响的数值模拟. 物理学报, 2021, 70(7): 075204. doi: 10.7498/aps.70.20201667
    [6] 陈坚, 刘志强, 郭恒, 李和平, 姜东君, 周明胜. 基于气体放电等离子体射流源的模拟离子引出实验平台物理特性. 物理学报, 2018, 67(18): 182801. doi: 10.7498/aps.67.20180919
    [7] 车碧轩, 李小康, 程谋森, 郭大伟, 杨雄. 一种耦合外部电路的脉冲感应推力器磁流体力学数值仿真模型. 物理学报, 2018, 67(1): 015201. doi: 10.7498/aps.67.20171225
    [8] 陈茂林, 夏广庆, 魏延明, 于洋, 孙安邦, 毛根旺. 电动帆平行双导线鞘层特性与受力分析. 物理学报, 2016, 65(20): 209601. doi: 10.7498/aps.65.209601
    [9] 金逸舟, 杨涓, 冯冰冰, 罗立涛, 汤明杰. 不同磁路电子回旋共振离子源引出实验. 物理学报, 2016, 65(4): 045201. doi: 10.7498/aps.65.045201
    [10] 杨超, 印茂伟, 尚丽萍, 王卫, 刘毅, 夏连胜, 邓建军. 多峰场负氢离子源磁体布局对等离子体特性影响的数值模拟研究. 物理学报, 2015, 64(8): 085203. doi: 10.7498/aps.64.085203
    [11] 汤明杰, 杨涓, 金逸舟, 罗立涛, 冯冰冰. 微型电子回旋共振离子推力器离子源结构优化实验研究. 物理学报, 2015, 64(21): 215202. doi: 10.7498/aps.64.215202
    [12] 陈茂林, 夏广庆, 徐宗琦, 毛根旺. 栅极热变形对离子推力器工作过程影响分析. 物理学报, 2015, 64(9): 094104. doi: 10.7498/aps.64.094104
    [13] 陈茂林, 夏广庆, 毛根旺. 多模式离子推力器栅极系统三维粒子模拟仿真. 物理学报, 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [14] 杨超, 刘大刚, 刘腊群, 夏蒙重, 王辉辉, 王小敏. 负氢离子源中电子能量沉积三维数值模拟研究. 物理学报, 2012, 61(15): 155205. doi: 10.7498/aps.61.155205
    [15] 夏广庆, 薛伟华, 陈茂林, 朱雨, 朱国强. 氩气微腔放电中特性参数的数值模拟研究. 物理学报, 2011, 60(1): 015201. doi: 10.7498/aps.60.015201
    [16] 杨涓, 石峰, 杨铁链, 孟志强. 电子回旋共振离子推力器放电室等离子体数值模拟. 物理学报, 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
    [17] 杨雁南, 杨 波, 朱金荣, 沈中华, 陆 建, 倪晓武. 真空环境下激光与固体靶冲量耦合的机理分析和数值模拟. 物理学报, 2007, 56(10): 5945-5951. doi: 10.7498/aps.56.5945
    [18] 杨 涓, 苏纬仪, 毛根旺, 夏广庆. 外加磁场微波等离子推力器内流场数值模拟. 物理学报, 2006, 55(12): 6494-6499. doi: 10.7498/aps.55.6494
    [19] 刘明海, 胡希伟, 邬钦崇, 俞国扬. 电子回旋共振等离子体源的数值模拟. 物理学报, 2000, 49(3): 497-501. doi: 10.7498/aps.49.497
    [20] 王德真, 马腾才, 宫野. 等离子体源离子注入球形靶的蒙特-卡罗模拟. 物理学报, 1995, 44(6): 877-884. doi: 10.7498/aps.44.877
计量
  • 文章访问数:  6459
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-05
  • 修回日期:  2022-03-03
  • 上网日期:  2022-07-05
  • 刊出日期:  2022-07-20

/

返回文章
返回