搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微型电子回旋共振离子源的全局模型研究

武文斌 彭士香 张艾霖 周海京 马腾昊 蒋耀湘 李凯 崔步坚 郭之虞 陈佳洱

引用本文:
Citation:

微型电子回旋共振离子源的全局模型研究

武文斌, 彭士香, 张艾霖, 周海京, 马腾昊, 蒋耀湘, 李凯, 崔步坚, 郭之虞, 陈佳洱

Research on global model of the miniaturized electron cyclotron resonance ion source

Wu Wen-Bin, Peng Shi-Xiang, Zhang Ai-Lin, Zhou Hai-Jing, Ma Teng-Hao, Jiang Yao-Xiang, Li Kai, Cui Bu-Jian, Guo Zhi-Yu, Chen Jia-Er
PDF
导出引用
  • 微型电子回旋共振(electron cyclotron resonance, ECR)离子源在紧凑型离子注入机、小型中子管、微型离子推进器等领域有着十分广泛的应用.为了深入认识微型ECR离子源的工作机理,本文以北京大学自主研制的一款微型氘离子源作为研究对象,以氢气和氘气放电形成的等离子体为例,发展了一种基于粒子平衡方程的全局模型. 研究结果表明,该离子源束流成分与离子源的运行气压和微波功率有着很强的依赖关系. 对于氢气放电等离子体,微波功率低于100 W时,离子源可以分别在低气压和高气压情况下获得离子比超过50%的H2+离子束和H3+离子束;当微波功率高于100 W时,可以在很宽的运行气压范围内,获得质子比超过50%的束流. 因此,提高微波功率是提高微型离子源质子比的关键. 对于氘气放电等离子体,三种离子比例对运行气压和微波功率的依赖关系与氢气放电等离子体的规律基本一致. 但是在相同的运行条件下,D+比例比H+比例高10%~25%. 也就是说,在微型氘离子源的测试和优化过程中,可以利用氢气代替氘气进行实验,并将质子比测量结果作为相同条件下氘离子比例的下限.
    Miniaturized electron cyclotron resonance (ECR) ion sources are widely used in compact ion implanters, miniature neutron tubes, and miniaturized ion thrusters. To understand the mechanism of miniaturized ECR ion sources, a miniaturized deuterium ion source developed by Peking University is taken as the research object. In this work, a global model based on particle balance equations is developed for hydrogen and deuterium plasma research inside the miniaturized ECR source. The research results show that both the hydrogen discharge process and the deuterium discharge process of the ion source have strong dependences on the gas pressure and microwave power. The calculated results show that high power is beneficial to increase the ratio of H+ (D+) ions, low pressure is helpful to increase the ratio of H2+ (D2+) ions, high pressure and low power are beneficial to increase the ratio of H3+ (D3+) ions. In addition, there are large differences between the ion ratios of hydrogen discharge and deuterium discharge. Under the same operating parameters, the ratios of D+ ions are 10%~25% higher than the ratios of H+ ions since the plasma density of deuterium discharge is higher than that of hydrogen plasma. Therefore, during the operation of miniaturized source, H2 gas can be used instead of D2 gas to carry out experiments, and a quantitative estimate of the ratio of D+ ions under the corresponding operating parameters can be given based on the ratio of H+ ions. At last, the calculated results show that high microwave power is a prerequisite for high ratio of H+ (D+) ions. However, due to the limitation of microwave coupling efficiency, the miniaturized ECR ion source cannot work in the region where the microwave power is greater than 150 W, so that the H+ (D+) ratio cannot be further increased, which limits its further applications in neutron sources, implanters and etc. Therefore, how to improve the microwave coupling efficiency should be one of the key research contents of the miniaturized ECR ion source. The global model proposed in this paper is helpful to understand the physical process of the miniaturized ECR ion source, but there are also some shortcomings. Firstly, the influence of the secondary electron emission coefficient is not considered in the model, so it is impossible to study the influence of wall materials on ion ratio in detail. Secondly, since the dissociation degree depends on the results of plasma diagnosis, and the error of plasma diagnosis will have a certain impact on the accuracy of the model. In addition, only the models of hydrogen and deuterium plasma are established in this paper, thus it is impossible to study the process of more gas discharge plasma. In the future, the above factors will be considered and the model will be further improved to establish a complete and self-consistent global model of the miniature ECR ion source.
  • [1]

    Gammino S, Celona L, Ciavola G, Maimone F, Mascali D 2010 Rev. Sci. Instrum. 81 02B313

    [2]

    Alonso J R, Calabretta L, Campo D, Celona L, Conrad J, Martinez R G, Johnson R, Labrecque F, Toups M H, Winklehner D, Winslow L 2014 Rev. Sci. Instrum. 85 02A742

    [3]

    Harrison S E, Voss L F, Torres A M, Frye C D, Shao Q, Nikolić R J 2017 J. Vat. Sci. Technol. A 35 061303

    [4]

    More S E, Dave J R, Makar P K, Bhoraskar S V, Premkumar S, Tomar G B, Mathe V L 2020 Appl. Surf. Sci. 506 144665

    [5]

    Kim W J, Ryu J, Im J, Kim S H, Kang S Y, Lee J H, Jo S H, Ha B K 2018 Mol. Genet. Genomics. 293 1169

    [6]

    Jiang Y X, Peng S X, Wu W B, Ma T H, Zhang J F, Ren H T, Zhang T, Wen J M, Xu Y, Zhang A L, Sun J, Guo Z Y, Chen J E 2020 Rev. Sci. Instrum. 91 033319

    [7]

    Vainionpaa J H, Harris J L, Piestrup M A, Gary C K, Williams D L, Apodaca M D, Cremer J T, Ji Q, Ludewigt B A, Jones G 2013 AIP Conf. Proc. 1525 118

    [8]

    Fu S, Ding Z, Ke Y, Tian L 2020 IEEE T. Plasma. Sci. 48 676

    [9]

    Wen J M, Peng S X, Ren H T, Zhang T, Zhang J F, Wu W B, Sun J, Guo Z Y, Chen J E 2018 Chin. Phys. B 27 055204

    [10]

    Bogomolov S L, Bondarchenko A E, Efremov A A, Kostyukhov Y E, Kuzmenkov K I, Loginov V N, Pugachev D K, Fatkullin R D 2019 J. Instrum. 14 C01009

    [11]

    Ke Y J, Sun X F, Chen X K, Tian L C, Zhang T P, Zheng F M, Jia Y H, Jiang H C 2017 Plasma Sci. Technol. 19 095503

    [12]

    Yamamoto N, Chikaoka T, Masui H, Nakashima H, Takao Y, Kondo S 2006 In 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit California, America, July 9-12, 2006 p5177

    [13]

    Torii Y, Shimada M, Watanabe I 1992 Rev. Sci. Instrum. 63 2559

    [14]

    Ji Q 2011 AIP Conf. Proc. 1336 528

    [15]

    Baumgarten C, Barchetti A, Einenkel H, Goetz D, Schmelzbach P A 2011 Rev. Sci. Instrum. 82 053304

    [16]

    Fatkullin R, Bogomolov S, Kuzmenkov K, Efremov A 2018 EPJ Web of Conf. 177 08003

    [17]

    Chan C F, Burrell C F, Cooper W S 1983 J Appl. Phys. 54 6119

    [18]

    Samuell C M, Corr C S 2016 Plasma Sources Sci. Technol. 25 015014

    [19]

    Zorat R, Goss J, Boilson D, Vender D 2000 Plasma Sources Sci. Technol. 9 161

    [20]

    Hollmann E M, Pigarov A Y 2002 Phys. Plasmas 9 4330

    [21]

    Ke J L, Liu Y G, Liu B L, Hu Y H, Liu M, Tang J, Zheng P, Li Y, Wu C L, Lou B C 2020 Instrum. Exp. Tech. 63 616

    [22]

    Svarnas P, Bacal M, Auvray P, Béchu S, Pelletier J 2006 Rev. Sci. Instrum. 77 03A512

    [23]

    Eguchi T, Sasao M, Shimabukuro Y, Ikemoto F, Kisaki M, Nakano H, Tsumori K, Wada M 2020 Rev. Sci. Instrum. 91 013508

    [24]

    Janev R K, Langer W D Jr, Evans K, Post D E 1987 Elementary Processes in Hydrogen-Helium Plasmas: Cross Sections and Reaction Rate Coefficients (Springer-Verlag Berlin Heidelberg) pp18-68

    [25]

    Huh S R, Kim N K, Jung B K, Chung K J, Hwang Y S, Kim G H 2015 Phys. Plasmas 22 033506

    [26]

    McNeely P, Dudin S V, Christ-Koch S, Fantz U, the NNBI Team 2009 Plasma Sources Sci. Technol. 18 014011

    [27]

    Godyak V A, Piejak R B, Alexandrovich B M 2002 Plasma Sources Sci. Technol. 11 525

    [28]

    Singh S B, Chand N, Pati D S 2009 Vacuum 83 372

    [29]

    Kimura T, Kasugai H 2010 J. Appl. Phys. 107 083308

    [30]

    Hjartarson A T, Thorsteinsson E G, Gudmundsson J T 2010 Plasma Sources Sci. Technol. 19 065008

    [31]

    Fantz U 2006 Plasma Sources Sci. Technol. 15 S137

    [32]

    Mazzaglia M, Castro G, Mascali D, Celona L, Neri L, Torrisi G, Gammino S, Reitano R, Naselli E 2019 Phys. Rev. Accel. Beams 22 053401

    [33]

    Wu W B, Ren H T, Peng S X, Xu Y, Wen J M, Sun J, Zhang A L, Zhang T, Zhang J F, Chen J E 2017 Chin. Phys. B 26 095204

    [34]

    Koga M, Yonesu A, Kawai Y 2003 Surf. Coat. Tech. 171 216

    [35]

    Reuben B G, Friedman L 1962 J. Chem. Phys. 37 1636

    [36]

    Dandl R A, Guest G E 1991 J. Vac. Sci. Technol. A 9 3119

    [37]

    Fu S L, Chen J F, Hu S J, Wu X Q, Lee Y, Fan S L 2006 Plasma Sources Sci. Technol. 15 187

    [38]

    Yoshida Y 1992 Appl. Phys. Lett. 61 1733

    [39]

    Zhang M, Peng S X, Ren H T, Song Z Z, Yuan Z X, Zhou Q F, Lu P N, Xu R, Zhao J, Yu J X, Chen J E, Guo Z Y, Lu Y R 2010 Rev. Sci. Instrum. 81 02B715

    [40]

    Wu W B, Peng S X, Ren H T, Xu Y, Wen J M, Zhang A L, Zhang T, Zhang J F, Sun J, Guo Z Y, Chen J E 2018 AIP Conf. Proc. 2011 020004

    [41]

    Wu Y 2009 Development of a Compact Neutron Generator to be Used For Associated Particle Imaging Utilizing a RF-Driven Ion Source. Ph.D. Dissertation (Berkeley: UC Berkeley)

    [42]

    Wu W B, Zhang A L, Peng S X, Ma T H, Jiang Y X, Li K, Zhang J F, Zhang T, Wen J M, Xu Y, Guo Z Y, Chen J E 2020 Vacuum 182 109744

    [43]

    Fantz U, Falter H, Franzen P, Wünderlich D, Berger M, Lorenz A, Kraus W, McNeely P, Riedl R, Speth E 2006 Nucl. Fusion 46 S297

    [44]

    Child C D 1911 Phys. Rev. 32 492

    [45]

    Langmuir I 1913 Phys. Rev. 2 450

    [46]

    Xu Y, Peng S X, Ren H T, Zhang A L, Zhang T, Xu Y, Zhang J F, Wen J M, Wu W B, Guo Z Y, Chen J E 2017 Chin. Phys. B 26 085203

    [47]

    Miracoli R, Celona L, Castro G, Mascali D, Gammino S, Lanaia D, Giugno R Di, Serafno T, Ciavola G 2012 Rev. Sci. Instrum. 83 02A305

  • [1] 付瑜亮, 杨涓, 王彬, 胡展, 夏旭, 牟浩. 2 cm电子回旋共振离子源猝灭现象模拟. 物理学报, doi: 10.7498/aps.71.20212151
    [2] 陈国华, 石科军, 储进科, 吴昊, 周池楼, 肖舒. 环形磁场金属等离子体源冷却流场的数值模拟与优化. 物理学报, doi: 10.7498/aps.70.20201368
    [3] 张钰如, 高飞, 王友年. 低气压感性耦合等离子体源模拟研究进展. 物理学报, doi: 10.7498/aps.70.20202247
    [4] 夏旭, 杨涓, 付瑜亮, 吴先明, 耿海, 胡展. 2 cm电子回旋共振离子推力器离子源中磁场对等离子体特性与壁面电流影响的数值模拟. 物理学报, doi: 10.7498/aps.70.20201667
    [5] 陈坚, 刘志强, 郭恒, 李和平, 姜东君, 周明胜. 基于气体放电等离子体射流源的模拟离子引出实验平台物理特性. 物理学报, doi: 10.7498/aps.67.20180919
    [6] 车碧轩, 李小康, 程谋森, 郭大伟, 杨雄. 一种耦合外部电路的脉冲感应推力器磁流体力学数值仿真模型. 物理学报, doi: 10.7498/aps.67.20171225
    [7] 陈茂林, 夏广庆, 魏延明, 于洋, 孙安邦, 毛根旺. 电动帆平行双导线鞘层特性与受力分析. 物理学报, doi: 10.7498/aps.65.209601
    [8] 金逸舟, 杨涓, 冯冰冰, 罗立涛, 汤明杰. 不同磁路电子回旋共振离子源引出实验. 物理学报, doi: 10.7498/aps.65.045201
    [9] 杨超, 印茂伟, 尚丽萍, 王卫, 刘毅, 夏连胜, 邓建军. 多峰场负氢离子源磁体布局对等离子体特性影响的数值模拟研究. 物理学报, doi: 10.7498/aps.64.085203
    [10] 汤明杰, 杨涓, 金逸舟, 罗立涛, 冯冰冰. 微型电子回旋共振离子推力器离子源结构优化实验研究. 物理学报, doi: 10.7498/aps.64.215202
    [11] 陈茂林, 夏广庆, 徐宗琦, 毛根旺. 栅极热变形对离子推力器工作过程影响分析. 物理学报, doi: 10.7498/aps.64.094104
    [12] 陈茂林, 夏广庆, 毛根旺. 多模式离子推力器栅极系统三维粒子模拟仿真. 物理学报, doi: 10.7498/aps.63.182901
    [13] 杨超, 刘大刚, 刘腊群, 夏蒙重, 王辉辉, 王小敏. 负氢离子源中电子能量沉积三维数值模拟研究. 物理学报, doi: 10.7498/aps.61.155205
    [14] 夏广庆, 薛伟华, 陈茂林, 朱雨, 朱国强. 氩气微腔放电中特性参数的数值模拟研究. 物理学报, doi: 10.7498/aps.60.015201
    [15] 杨涓, 石峰, 杨铁链, 孟志强. 电子回旋共振离子推力器放电室等离子体数值模拟. 物理学报, doi: 10.7498/aps.59.8701
    [16] 杨雁南, 杨 波, 朱金荣, 沈中华, 陆 建, 倪晓武. 真空环境下激光与固体靶冲量耦合的机理分析和数值模拟. 物理学报, doi: 10.7498/aps.56.5945
    [17] 辛 煜, 狄小莲, 虞一青, 宁兆元. 多源感应耦合等离子体的产生及等离子体诊断. 物理学报, doi: 10.7498/aps.55.3494
    [18] 杨 涓, 苏纬仪, 毛根旺, 夏广庆. 外加磁场微波等离子推力器内流场数值模拟. 物理学报, doi: 10.7498/aps.55.6494
    [19] 刘明海, 胡希伟, 邬钦崇, 俞国扬. 电子回旋共振等离子体源的数值模拟. 物理学报, doi: 10.7498/aps.49.497
    [20] 王德真, 马腾才, 宫野. 等离子体源离子注入球形靶的蒙特-卡罗模拟. 物理学报, doi: 10.7498/aps.44.877
计量
  • 文章访问数:  196
  • PDF下载量:  10
  • 被引次数: 0
出版历程

微型电子回旋共振离子源的全局模型研究

  • 1) (北京应用物理与计算数学研究所, 北京 100094)
  • 2) (北京大学物理学院&核物理与核技术国家重点实验室, 北京 100871)
  • 3) (中国科学技术大学近代物理系, 合肥 230026)

摘要: 微型电子回旋共振(electron cyclotron resonance, ECR)离子源在紧凑型离子注入机、小型中子管、微型离子推进器等领域有着十分广泛的应用.为了深入认识微型ECR离子源的工作机理,本文以北京大学自主研制的一款微型氘离子源作为研究对象,以氢气和氘气放电形成的等离子体为例,发展了一种基于粒子平衡方程的全局模型. 研究结果表明,该离子源束流成分与离子源的运行气压和微波功率有着很强的依赖关系. 对于氢气放电等离子体,微波功率低于100 W时,离子源可以分别在低气压和高气压情况下获得离子比超过50%的H2+离子束和H3+离子束;当微波功率高于100 W时,可以在很宽的运行气压范围内,获得质子比超过50%的束流. 因此,提高微波功率是提高微型离子源质子比的关键. 对于氘气放电等离子体,三种离子比例对运行气压和微波功率的依赖关系与氢气放电等离子体的规律基本一致. 但是在相同的运行条件下,D+比例比H+比例高10%~25%. 也就是说,在微型氘离子源的测试和优化过程中,可以利用氢气代替氘气进行实验,并将质子比测量结果作为相同条件下氘离子比例的下限.

English Abstract

目录

    /

    返回文章
    返回