搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

栅极热变形对离子推力器工作过程影响分析

陈茂林 夏广庆 徐宗琦 毛根旺

引用本文:
Citation:

栅极热变形对离子推力器工作过程影响分析

陈茂林, 夏广庆, 徐宗琦, 毛根旺

Analysis on the effects of optics thermal deformation on the ion thruster operation

Chen Mao-Lin, Xia Guang-Qing, Xu Zong-Qi, Mao Gen-Wang
PDF
导出引用
  • 栅极热变形是影响离子推力器性能和寿命的重要因素. 采用三维粒子方法对栅极系统等离子体输运过程进行模拟, 对比、分析栅极热变形前后栅极系统的电子返流限制、导流系数限制、离子通过率和发散角损失. 结果表明: 栅极热变形增大了屏栅离子通过率和推力器推力值, 并由于加速栅截止电流阈值的提高拓展了推力器工作电流区间, 但电子返流阈值的明显降低对栅极系统可靠工作造成了不利影响.
    Optics thermal deformation is an important factor that impacts the performance and lifetime of ion thrusters. Although some theoretical reflearch concerned with this problem was reported, its mechanism has not been fully understood. In this study, numerical investigations are performed to explain the effect of thermal deformation on the performance and lifetime of ion thrusters. The transient behavior of charged particles is calculated using a particle-in-cell simulation, while the momentum transfer collision and the charge exchange collision are calculated by means of the Monte Carlo method. Electron backstreaming restriction, perveance restriction, ions through rate, and divergence angle losses are compared and analyzed for optics deformed and undeformed. And the influence of these factors on thruster’s performance and lifetime is discussed. Results show that the ion through rate of the screen grid increases when optics begin deformed, and the thrust is slightly higher than the theoretical values predicted; the perveance threshold of the accelerator grid increases with optics haveing thermal deformation, while the crossover limit threshold is little changed, namely the thruster can be operated in conditions of a larger beam current; the electron backstreaming restriction threshold is significantly lower under a high beam current condition with optics deformed, which means that a lower accelerating gate bias is necessary to ensure thruster work. For the less obvious change of acceleratng grid current when the beam is focused, there is no moreflerosion and change of lifetime. Results provide a reflerence for the optimization design of optics and evaluation of thruster performance and lifetime.
    • 基金项目: 国家自然科学基金(批准号: 51276147, 11105023, 11275034)、中央高校基本科研业务费专项资金(批准号: 3102014KYJD005, 3132014328)和西北工业大学基础研究基金(批准号: NPU-FFR-JC20120201)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51276147, 11105023, 11275034), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3102014KYJD005, 3132014328), and the NPU Foundation for Fundamental Research, China (Grant No. NPU-FFR-JC20120201).
    [1]

    Sovey J S, Rawlin V K, Patterson M J 2001 J. Propuls. Power 17 517

    [2]

    Patterson M J, Sovey J S 2013 J. Aerospace Engineering 26 300

    [3]

    Moskovitz N A, Abe S, Pan K S, Osip D J, Pefkou D, Melita M D, Elias M, Kitazato K, Bus S J, Demeo F E, Binzel R P, Abell P A 2013 Icarus 224 24

    [4]

    Kaufman H R 1974 Advances in Electronics and Electron Physics 36 265

    [5]

    Bundesmann C, Tartz M, Scholze F, Neumann H, Leiter H J, Scortecci F 2011 Journal of Propulsion and Power 27 532

    [6]

    Noord J V, Gallimore A, Rawlin V K 2000 J. Propuls. Power 16 357

    [7]

    Zhen M F 2006 Vacuum & Cryogenics 12 33 (in Chinese) [郑茂繁 2006 真空与低温 12 33]

    [8]

    Wirz R E, Karz I, Goebel D M, Anderson J R 2011 J. Propul. Power 27 206

    [9]

    Wang J, Polk J, Brophy J, Katz J 2003 J. Propul. Power 19 1192

    [10]

    Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin 63 182901 (in Chinese) [陈茂林, 夏广庆, 毛根旺 2014 物理学报 63 182901]

    [11]

    Wang H Y, Jiang W, Sun P, Kong L B 2014 Chin. Phys. B 23 035204

    [12]

    Duan P, Qin H J, Zhou X W, Cao A N, Liu J Y, Qing S W 2014 Acta Phys. Sin 63 085204 (in Chinese) [段萍, 覃海娟, 周新维, 曹安宁, 刘金远, 卿少伟 2014 物理学报 63 085204]

    [13]

    Sun A B 2010 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University) (in Chinese) [孙安邦2010博士学位论文(西安: 西北工业大学)]

    [14]

    Chen M L, Mao G W, Xia G Q, Yang J, Sun A B 2012 Journal of propulsion technology 33 150 (in Chinese) [陈茂林, 毛根旺, 夏广庆, 杨涓, 孙安邦 2012 推进技术 33 150]

    [15]

    Miller J S, Pullins S H, Levandier D J, Chiu Y, Dressler R A 2002 J. Appl. Phys. 91 984

    [16]

    Sudhakar M, James A M 2010 J. Propul. Power 26 673

    [17]

    Jia Y H, Zhang T P, Zhen M F, Li X K 2012 Journal of Propulsion Technology 33 991 (in Chinese) [贾艳辉, 张天平, 郑茂繁, 李兴坤 2012 推进技术 33 991]

  • [1]

    Sovey J S, Rawlin V K, Patterson M J 2001 J. Propuls. Power 17 517

    [2]

    Patterson M J, Sovey J S 2013 J. Aerospace Engineering 26 300

    [3]

    Moskovitz N A, Abe S, Pan K S, Osip D J, Pefkou D, Melita M D, Elias M, Kitazato K, Bus S J, Demeo F E, Binzel R P, Abell P A 2013 Icarus 224 24

    [4]

    Kaufman H R 1974 Advances in Electronics and Electron Physics 36 265

    [5]

    Bundesmann C, Tartz M, Scholze F, Neumann H, Leiter H J, Scortecci F 2011 Journal of Propulsion and Power 27 532

    [6]

    Noord J V, Gallimore A, Rawlin V K 2000 J. Propuls. Power 16 357

    [7]

    Zhen M F 2006 Vacuum & Cryogenics 12 33 (in Chinese) [郑茂繁 2006 真空与低温 12 33]

    [8]

    Wirz R E, Karz I, Goebel D M, Anderson J R 2011 J. Propul. Power 27 206

    [9]

    Wang J, Polk J, Brophy J, Katz J 2003 J. Propul. Power 19 1192

    [10]

    Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin 63 182901 (in Chinese) [陈茂林, 夏广庆, 毛根旺 2014 物理学报 63 182901]

    [11]

    Wang H Y, Jiang W, Sun P, Kong L B 2014 Chin. Phys. B 23 035204

    [12]

    Duan P, Qin H J, Zhou X W, Cao A N, Liu J Y, Qing S W 2014 Acta Phys. Sin 63 085204 (in Chinese) [段萍, 覃海娟, 周新维, 曹安宁, 刘金远, 卿少伟 2014 物理学报 63 085204]

    [13]

    Sun A B 2010 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University) (in Chinese) [孙安邦2010博士学位论文(西安: 西北工业大学)]

    [14]

    Chen M L, Mao G W, Xia G Q, Yang J, Sun A B 2012 Journal of propulsion technology 33 150 (in Chinese) [陈茂林, 毛根旺, 夏广庆, 杨涓, 孙安邦 2012 推进技术 33 150]

    [15]

    Miller J S, Pullins S H, Levandier D J, Chiu Y, Dressler R A 2002 J. Appl. Phys. 91 984

    [16]

    Sudhakar M, James A M 2010 J. Propul. Power 26 673

    [17]

    Jia Y H, Zhang T P, Zhen M F, Li X K 2012 Journal of Propulsion Technology 33 991 (in Chinese) [贾艳辉, 张天平, 郑茂繁, 李兴坤 2012 推进技术 33 991]

  • [1] 付瑜亮, 张思远, 杨谨远, 孙安邦, 王亚楠. 微波离子推力器中磁场发散区电子加热模式研究. 物理学报, 2024, 73(9): 095203. doi: 10.7498/aps.73.20240017
    [2] 谈人玮, 杨涓, 耿海, 吴先明, 牟浩. 氮气工质10厘米ECRIT中和器实验研究. 物理学报, 2023, 72(4): 045202. doi: 10.7498/aps.72.20221951
    [3] 付瑜亮, 杨涓, 夏旭, 孙安邦. 放电室长度对电子回旋共振离子推力器性能的影响机理. 物理学报, 2023, 72(17): 175204. doi: 10.7498/aps.72.20230719
    [4] 武文斌, 彭士香, 张艾霖, 周海京, 马腾昊, 蒋耀湘, 李凯, 崔步坚, 郭之虞, 陈佳洱. 微型电子回旋共振离子源的全局模型. 物理学报, 2022, 71(14): 145204. doi: 10.7498/aps.71.20212250
    [5] 李建鹏, 靳伍银, 赵以德. 加速电压和阳极流率对离子推力器性能的影响. 物理学报, 2022, 71(1): 015202. doi: 10.7498/aps.71.20211316
    [6] 李建鹏, 靳伍银, 赵以德. 多模式离子推力器输入参数设计及工作特性研究. 物理学报, 2022, 71(7): 075203. doi: 10.7498/aps.71.20212045
    [7] 李建鹏, 赵以德, 靳伍银, 张兴民, 李娟, 王彦龙. 多模式离子推力器放电室和栅极设计及其性能实验研究. 物理学报, 2022, 71(19): 195203. doi: 10.7498/aps.71.20220720
    [8] 朱海龙, 李雪迎, 童洪辉. 三维数值模拟射频热等离子体的物理场分布. 物理学报, 2021, 70(15): 155202. doi: 10.7498/aps.70.20202135
    [9] 韩小英, 李凌霄, 戴振生, 郑无敌, 古培俊, 吴泽清. 一个快速模拟热稠密非平衡等离子体的碰撞辐射模型. 物理学报, 2021, 70(11): 115202. doi: 10.7498/aps.70.20201946
    [10] 车碧轩, 李小康, 程谋森, 郭大伟, 杨雄. 一种耦合外部电路的脉冲感应推力器磁流体力学数值仿真模型. 物理学报, 2018, 67(1): 015201. doi: 10.7498/aps.67.20171225
    [11] 龙建飞, 张天平, 杨威, 孙明明, 贾艳辉, 刘明正. 离子推力器推力密度特性. 物理学报, 2018, 67(2): 022901. doi: 10.7498/aps.67.20171507
    [12] 龙建飞, 张天平, 李娟, 贾艳辉. 离子推力器栅极透过率径向分布特性研究. 物理学报, 2017, 66(16): 162901. doi: 10.7498/aps.66.162901
    [13] 陈茂林, 夏广庆, 魏延明, 于洋, 孙安邦, 毛根旺. 电动帆平行双导线鞘层特性与受力分析. 物理学报, 2016, 65(20): 209601. doi: 10.7498/aps.65.209601
    [14] 孙晓艳, 雷泽民, 卢兴强, 范滇元. 表面颗粒污染物诱导薄光学元件初始损伤的机理. 物理学报, 2014, 63(13): 134201. doi: 10.7498/aps.63.134201
    [15] 陈茂林, 夏广庆, 毛根旺. 多模式离子推力器栅极系统三维粒子模拟仿真. 物理学报, 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [16] 夏广庆, 薛伟华, 陈茂林, 朱雨, 朱国强. 氩气微腔放电中特性参数的数值模拟研究. 物理学报, 2011, 60(1): 015201. doi: 10.7498/aps.60.015201
    [17] 杨涓, 石峰, 杨铁链, 孟志强. 电子回旋共振离子推力器放电室等离子体数值模拟. 物理学报, 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
    [18] 杨雁南, 杨 波, 朱金荣, 沈中华, 陆 建, 倪晓武. 真空环境下激光与固体靶冲量耦合的机理分析和数值模拟. 物理学报, 2007, 56(10): 5945-5951. doi: 10.7498/aps.56.5945
    [19] 杨 涓, 苏纬仪, 毛根旺, 夏广庆. 外加磁场微波等离子推力器内流场数值模拟. 物理学报, 2006, 55(12): 6494-6499. doi: 10.7498/aps.55.6494
    [20] 杨 涓, 毛根旺, 何洪庆, 唐金兰, 宋 军, 苏纬仪. 微波等离子推力器真空中工作的电微波系统及其实验. 物理学报, 2004, 53(12): 4282-4286. doi: 10.7498/aps.53.4282
计量
  • 文章访问数:  5245
  • PDF下载量:  231
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-26
  • 修回日期:  2014-11-13
  • 刊出日期:  2015-05-05

/

返回文章
返回