搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粒径对激光驱动颗粒溅射动力学特征的影响

周毛吉 李亚举 钱东斌 叶晓燕 林平 马新文

引用本文:
Citation:

粒径对激光驱动颗粒溅射动力学特征的影响

周毛吉, 李亚举, 钱东斌, 叶晓燕, 林平, 马新文

Influence of grain size on dynamic characterizations of laser-driven grain ejection

Zhou Mao-Ji, Li Ya-Ju, Qian Dong-Bin, Ye Xiao-Yan, Lin Ping, Ma Xin-Wen
PDF
HTML
导出引用
  • 激光脉冲辐照材料靶面产生的等离子体的演化过程会对靶面施加一脉冲式冲击压. 当被辐照的靶材为离散颗粒堆积物时, 激光冲击压在靶面能够驱动颗粒发生溅射现象. 本文选用中值直径分别为84, 109, 184, 234 μm且具有窄粒径分布的干燥石英砂堆积形成离散颗粒靶, 并采用波长为1064 nm的Nd: YAG 纳秒激光脉冲与其相互作用产生的冲击压驱动石英颗粒发生溅射, 同时通过高速摄像机记录溅射过程, 研究了粒径对激光驱动颗粒溅射动力学特征的影响. 通过分析高速影像发现, 激光驱动的颗粒溅射在时间尺度上可以分为两个特征明显的过程, 即持续百微秒垂直于靶面方向的快速早期溅射过程和持续几十毫秒扇形颗粒帘结构的慢速后期溅射过程. 前者对应的颗粒出射动能呈现出了随粒径的增加而增大的趋势, 后者对应的沿径向扩张的帘底直径D随时间$ t $的演化规律遵循点源模型的描述$ : {D\left(t\right)=\alpha t}^{\beta } $, 系数$ \mathrm{\alpha } $的拟合值随粒径的增加而减小, 幂指数$ \beta $的拟合值却呈现出了随粒径增加而增大的趋势. 通过细致考虑粒径依赖的颗粒在气流中的冲量耦合效率, 以及粒径依赖的激光与颗粒靶相互作用产生的等离子体特征, 对以上实验观察给予了合理的解释. 本研究加深了人们对激光驱动颗粒溅射机理的认识.
    When intense laser pulse irradiates a target surface, the energetic processes of generation and expansion of laser-induced plasma will affect a localized pressure impulse around the irradiation zone. As a result, pulsed laser ablating granular target can drive a physical phenomenon of grain ejection. In this work, taking dry glass beads with different grain sizes as an example of granular targets and using high-speed video camera, we experimentally investigate the grain-size dependent dynamics of grain ejection driven by nanosecond laser pulses. The measured video sequences clearly exhibit that the laser-driven grain ejection process can be separated into two regimes: early-stage fast ejecting process and later-stage slow ejecting process. We find that there exists an obvious grain size effect on the kinetic energy of grains in the early-stage ejecting process. In addition, the temporal evolution of transient ejection of a curtain diameter $ D\left(t\right) $ corresponding to the later-stage ejecting process obeys the well-known “point source” law, $ {D\left(t\right)=\alpha t}^{\beta } $, where both parameters $ \alpha $ and $ \beta $ depend on grain size. The observations mentioned above can be reasonably explained by considering the grain size dependent efficiency of impulse coupling between grain and plasma flow and plasma features generated by interaction of laser pulse with granular targets. These experimental results improve the understanding of the mechanism of laser-driven grain ejection.
      通信作者: 钱东斌, qiandb@impcas.ac.cn ; 叶晓燕, yexy@lzu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0402300)、国家自然科学基金(批准号: 11974359)和先进能源科学与技术广东省实验室建设经费资助的课题.
      Corresponding author: Qian Dong-Bin, qiandb@impcas.ac.cn ; Ye Xiao-Yan, yexy@lzu.edu.cn
    • Funds: Supported by the National Key R&D Program, China (Grant No. 2017YFA0402300), the National Natural Science Foundation of China (Grant No. 11974359), and the Advanced Energy Science and Technology of Guangdong Laboratory, China.
    [1]

    Sedov L I 1946 Appl. Math. Mech. 10 241

    [2]

    Schmidt R M, Housen K R 1987 Int. J. Impact Eng. 5 543Google Scholar

    [3]

    Holsapple K A, Schmidt R M 1979 Lunar Planet Sci. 10 2757

    [4]

    Holsapple K A 1980 Lunar Planet Sci. 11 2379

    [5]

    Gault D E, Wedekind J A 1977 Experimental Hypervelocity Impact into Quartz Sand-II, Effects of Gravitational Acceleration (New York: Impact & Explosion Cratering Planetary & Terrestrial Implications Proceedings of the Symposium on Planetary Cratering Mechanics) p1231

    [6]

    Sedov L I 1959 Similarity and Dimensional Methods in Mechanics (4th Ed.) (New York: Academic Press) p377

    [7]

    Holsapple K A, Schmidt R M 1987 J. Geophys. Res. 92 6350Google Scholar

    [8]

    Holsapple K A 1993 Annu. Rev. Earth Planet. Sci. 21 333Google Scholar

    [9]

    Amanda M, Walsh, Kristi E. Holloway, Piotr Habdas, John R, de Bruyn 2003 Phys. Rev. Lett. 91 104301Google Scholar

    [10]

    Uehara J S, Ambroso M A, Ojha R P 2003 Phys. Rev. Lett. 90 194301Google Scholar

    [11]

    Katsuragi H, Durian D J 2007 Nat. Phys. 3 420Google Scholar

    [12]

    Pacheco-Vazquez F, Ruiz-Suarez J C 2011 Phys. Rev. Lett. 107 218001Google Scholar

    [13]

    Ciamarra M P, Lara A H, Lee A T, Goldman D I, Vishik I, Swinney H L 2004 Phys. Rev. Lett. 92 194301Google Scholar

    [14]

    Lohse D, Bergmann R, Mikkelsen R, et al. 2004 Phys. Rev. Lett. 93 198003Google Scholar

    [15]

    Nordstrom K N, Lim E, Harrington M, Losert W 2014 Phys. Rev. Lett. 112 228002Google Scholar

    [16]

    Clark A H, Kondic L, Behringer R P 2012 Phys. Rev. Lett. 109 238302Google Scholar

    [17]

    Satoru Y, Koji W, Norihisa O, Takafumi M 2006 Icarus 183 215Google Scholar

    [18]

    Marston J O, Li E Q, Thoroddsen S T 2012 J. Fluid Mech. 704 5Google Scholar

    [19]

    Boudet J F, Amarouchene Y, Kellay H 2006 Phys. Rev. Lett. 96 158001Google Scholar

    [20]

    Deboeuf S, Gondret P, Rabaud M 2009 Phys. Rev. E 79 041306Google Scholar

    [21]

    Benusiglio A, Quéré D, Clanet C 2014 J. Fluid Mech. 752 123Google Scholar

    [22]

    Pacheco-Vázquez F, Tacumá A, Marston J O 2017 Phys. Rev. E 96 032904Google Scholar

    [23]

    Gao M, Liu X, Vanin L P, Sun T P, Cheng X 2018 AIChE J. 10 16063Google Scholar

    [24]

    Marston J O, Pacheco-Vázquez F 2019 Phys. Rev. E 99 030901Google Scholar

    [25]

    Bilger H R, Habib T 1985 Appl. Opt. 24 686Google Scholar

    [26]

    Goldman D I, Umbahnowar P 2008 Phys. Rev. E 77 021308Google Scholar

    [27]

    Li X L, Li Y J, Li S T, et al. 2021 Phys. Rev. Appl. 16 024017Google Scholar

    [28]

    Li Y J, Li X L, Li ST, Zhou MJ, Qian D B, Chen L W, Yang J, Zhang S F, Ma X W 2021 J. Anal. Atom. Spectrom. 36 1969Google Scholar

    [29]

    Yu L Y, Lu J D, Chen W, Wu G, Shen K, Feng W 2005 Plasma Sci. Technol. 7 3041Google Scholar

  • 图 1  筛分的石英砂颗粒样品S2和S4的扫描电镜图像

    Fig. 1.  SEM images of the sieved glass beads taking S2 and S4 samples as examples.

    图 2  实验装置示意图

    Fig. 2.  Schematic of the experimental setup.

    图 3  颗粒靶S1 (a)—(f)和S4 (a')—(f')对应的颗粒溅射时空影像. 图(c)中垂直于靶面的双箭头线段给出了早期颗粒溅射过程中最快颗粒位置的定义, 图(e)中平行于靶面的双箭头线段给出了对后期颗粒溅射过程中颗粒帘底直径的定义

    Fig. 3.  Temporal and spatial images of grain ejection corresponding to granular targets S1 (a)–(f) and S4 (a')–(f'). The definitions for the fastest gain position in the early-stage ejecting process and the ejecta curtain diameter crossponding to the later-srage ejecting process are shown in panel (c) and panel (e), respectively.

    图 4  (a)早期颗粒溅射过程中最快颗粒的位置随时间的依赖关系; (b)最快颗粒的动能随粒径的依赖关系

    Fig. 4.  (a) Position of the fastest grain in the early-stage ejecting process as a function of time; (b) kinetic energy of the fastest particle as a function of grain size.

    图 5  不同粒径的颗粒靶对应的后期颗粒溅射过程形成的颗粒帘底直径随时间的演化. 实线对应了采用点源模型方程 $ {D\left(t\right)=at}^{\beta } $拟合的结果. 插图展示了颗粒帘扩张速率随时间的演化

    Fig. 5.  Ejecta curtain diameter corresponding to the later-stage ejecting process as a function of time. The solid lines show the fitting results with the point source model. The inset exhibits the speed of expanding ejecta curtain with time.

    图 6  不同粒径下的拟合参数 β 值和$ \alpha $

    Fig. 6.  Fitting parameters β and α at different grain sizes.

  • [1]

    Sedov L I 1946 Appl. Math. Mech. 10 241

    [2]

    Schmidt R M, Housen K R 1987 Int. J. Impact Eng. 5 543Google Scholar

    [3]

    Holsapple K A, Schmidt R M 1979 Lunar Planet Sci. 10 2757

    [4]

    Holsapple K A 1980 Lunar Planet Sci. 11 2379

    [5]

    Gault D E, Wedekind J A 1977 Experimental Hypervelocity Impact into Quartz Sand-II, Effects of Gravitational Acceleration (New York: Impact & Explosion Cratering Planetary & Terrestrial Implications Proceedings of the Symposium on Planetary Cratering Mechanics) p1231

    [6]

    Sedov L I 1959 Similarity and Dimensional Methods in Mechanics (4th Ed.) (New York: Academic Press) p377

    [7]

    Holsapple K A, Schmidt R M 1987 J. Geophys. Res. 92 6350Google Scholar

    [8]

    Holsapple K A 1993 Annu. Rev. Earth Planet. Sci. 21 333Google Scholar

    [9]

    Amanda M, Walsh, Kristi E. Holloway, Piotr Habdas, John R, de Bruyn 2003 Phys. Rev. Lett. 91 104301Google Scholar

    [10]

    Uehara J S, Ambroso M A, Ojha R P 2003 Phys. Rev. Lett. 90 194301Google Scholar

    [11]

    Katsuragi H, Durian D J 2007 Nat. Phys. 3 420Google Scholar

    [12]

    Pacheco-Vazquez F, Ruiz-Suarez J C 2011 Phys. Rev. Lett. 107 218001Google Scholar

    [13]

    Ciamarra M P, Lara A H, Lee A T, Goldman D I, Vishik I, Swinney H L 2004 Phys. Rev. Lett. 92 194301Google Scholar

    [14]

    Lohse D, Bergmann R, Mikkelsen R, et al. 2004 Phys. Rev. Lett. 93 198003Google Scholar

    [15]

    Nordstrom K N, Lim E, Harrington M, Losert W 2014 Phys. Rev. Lett. 112 228002Google Scholar

    [16]

    Clark A H, Kondic L, Behringer R P 2012 Phys. Rev. Lett. 109 238302Google Scholar

    [17]

    Satoru Y, Koji W, Norihisa O, Takafumi M 2006 Icarus 183 215Google Scholar

    [18]

    Marston J O, Li E Q, Thoroddsen S T 2012 J. Fluid Mech. 704 5Google Scholar

    [19]

    Boudet J F, Amarouchene Y, Kellay H 2006 Phys. Rev. Lett. 96 158001Google Scholar

    [20]

    Deboeuf S, Gondret P, Rabaud M 2009 Phys. Rev. E 79 041306Google Scholar

    [21]

    Benusiglio A, Quéré D, Clanet C 2014 J. Fluid Mech. 752 123Google Scholar

    [22]

    Pacheco-Vázquez F, Tacumá A, Marston J O 2017 Phys. Rev. E 96 032904Google Scholar

    [23]

    Gao M, Liu X, Vanin L P, Sun T P, Cheng X 2018 AIChE J. 10 16063Google Scholar

    [24]

    Marston J O, Pacheco-Vázquez F 2019 Phys. Rev. E 99 030901Google Scholar

    [25]

    Bilger H R, Habib T 1985 Appl. Opt. 24 686Google Scholar

    [26]

    Goldman D I, Umbahnowar P 2008 Phys. Rev. E 77 021308Google Scholar

    [27]

    Li X L, Li Y J, Li S T, et al. 2021 Phys. Rev. Appl. 16 024017Google Scholar

    [28]

    Li Y J, Li X L, Li ST, Zhou MJ, Qian D B, Chen L W, Yang J, Zhang S F, Ma X W 2021 J. Anal. Atom. Spectrom. 36 1969Google Scholar

    [29]

    Yu L Y, Lu J D, Chen W, Wu G, Shen K, Feng W 2005 Plasma Sci. Technol. 7 3041Google Scholar

  • [1] 陆云杰, 陶弢, 赵斌, 郑坚. 激光烧蚀固体碳氢材料的离子组分分离研究. 物理学报, 2023, 72(7): 075201. doi: 10.7498/aps.72.20230013
    [2] 叶浩, 黄印博, 王琛, 刘国荣, 卢兴吉, 曹振松, 黄尧, 齐刚, 梅海平. 激光烧蚀-吸收光谱测量铀同位素比实验研究. 物理学报, 2021, 70(16): 163201. doi: 10.7498/aps.70.20210193
    [3] 白清顺, 张凯, 沈荣琦, 张飞虎, 苗心向, 袁晓东. 单晶铁金属表面污染物的激光烧蚀机理. 物理学报, 2018, 67(23): 234401. doi: 10.7498/aps.67.20180999
    [4] 罗乐乐, 窦志国, 叶继飞. 掺杂红外染料聚叠氮缩水甘油醚工质激光烧蚀推进性能优化探索. 物理学报, 2018, 67(18): 187901. doi: 10.7498/aps.67.20180479
    [5] 蔡颂, 陈根余, 周聪, 周枫林, 李光. 脉冲激光烧蚀材料等离子体反冲压力物理模型研究与应用. 物理学报, 2017, 66(13): 134205. doi: 10.7498/aps.66.134205
    [6] 段兴跃, 李小康, 程谋森, 李干. 激光烧蚀掺杂金属聚合物羽流屏蔽特性数值研究. 物理学报, 2016, 65(19): 197901. doi: 10.7498/aps.65.197901
    [7] 康小卫, 陈龙, 陈洁, 盛政明. 大气环境下飞秒激光对铝靶烧蚀过程的研究. 物理学报, 2016, 65(5): 055204. doi: 10.7498/aps.65.055204
    [8] 许文祥, 孙洪广, 陈文, 陈惠苏. 软物质系颗粒材料组成、微结构与传输性能之间关联建模综述. 物理学报, 2016, 65(17): 178101. doi: 10.7498/aps.65.178101
    [9] 季顺迎, 樊利芳, 梁绍敏. 基于离散元方法的颗粒材料缓冲性能及影响因素分析. 物理学报, 2016, 65(10): 104501. doi: 10.7498/aps.65.104501
    [10] 余田, 张国华, 孙其诚, 赵雪丹, 马文波. 垂直振动激励下颗粒材料有效质量和耗散功率的研究. 物理学报, 2015, 64(4): 044501. doi: 10.7498/aps.64.044501
    [11] 李干, 程谋森, 李小康. 激光烧蚀聚甲醛的热-化学耦合模型及其验证. 物理学报, 2014, 63(10): 107901. doi: 10.7498/aps.63.107901
    [12] 刘慎业, 黄翼翔, 胡昕, 张继彦, 杨国洪, 李军, 易荣清, 杜华冰, 丁永坤. 高强度二倍频激光辐照银薄膜靶的烧蚀和X光辐射实验研究. 物理学报, 2013, 62(3): 035202. doi: 10.7498/aps.62.035202
    [13] 常浩, 金星, 陈朝阳. 纳秒激光烧蚀冲量耦合数值模拟. 物理学报, 2013, 62(19): 195203. doi: 10.7498/aps.62.195203
    [14] 包凌东, 韩敬华, 段涛, 孙年春, 高翔, 冯国英, 杨李茗, 牛瑞华, 刘全喜. 纳秒紫外重复脉冲激光烧蚀单晶硅的热力学过程研究. 物理学报, 2012, 61(19): 197901. doi: 10.7498/aps.61.197901
    [15] 陈安民, 高勋, 姜远飞, 丁大军, 刘航, 金明星. 数值模拟飞秒激光加热金属的热电子发射. 物理学报, 2010, 59(10): 7198-7202. doi: 10.7498/aps.59.7198
    [16] 刘世炳, 刘院省, 何润, 陈涛. 纳秒激光诱导铜等离子体中原子激发态 5s' 4D7/2的瞬态特性研究. 物理学报, 2010, 59(8): 5382-5386. doi: 10.7498/aps.59.5382
    [17] 黄庆举. 激光烧蚀金属Al诱导发光的动力学研究. 物理学报, 2008, 57(4): 2314-2319. doi: 10.7498/aps.57.2314
    [18] 郑新亮, 李广山, 钟寿仙, 田进寿, 李振红, 任兆玉. 激光烧蚀对碳纳米管薄膜场发射性能的影响. 物理学报, 2008, 57(12): 7912-7918. doi: 10.7498/aps.57.7912
    [19] 成金秀, 郑志坚, 陈红素, 缪文勇, 陈 波, 王耀梅, 胡 昕. 1.06μm 激光直接驱动烧蚀靶内爆压缩特性. 物理学报, 2004, 53(10): 3419-3423. doi: 10.7498/aps.53.3419
    [20] 张树东, 李海洋. 激光烧蚀Al热原子与CF4反应中C2的形成及其发光光谱研究. 物理学报, 2003, 52(5): 1297-1301. doi: 10.7498/aps.52.1297
计量
  • 文章访问数:  4636
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-08
  • 修回日期:  2022-03-23
  • 上网日期:  2022-07-11
  • 刊出日期:  2022-07-20

/

返回文章
返回