搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳秒紫外重复脉冲激光烧蚀单晶硅的热力学过程研究

包凌东 韩敬华 段涛 孙年春 高翔 冯国英 杨李茗 牛瑞华 刘全喜

引用本文:
Citation:

纳秒紫外重复脉冲激光烧蚀单晶硅的热力学过程研究

包凌东, 韩敬华, 段涛, 孙年春, 高翔, 冯国英, 杨李茗, 牛瑞华, 刘全喜

Investigation of thermodynamic progress of silicon ablated by nanosecond uv repetitive pulse laser

Bao Ling-Dong, Han Jing-Hua, Duan Tao, Sun Nian-Chun, Gao Xiang, Feng Guo-Ying, Yang Li-Ming, Niu Rui-Hua, Liu Quan-Xi
PDF
导出引用
  • 采用波长为355 nm的纳秒紫外重复脉冲激光对单晶硅片进行了盲孔加工实验, 观测了随脉冲增加激光烧蚀硅片的外观形貌和盲孔孔深、孔径的变化规律, 并对紫外激光辐照硅片的热力学过程进行了分析. 研究结果表明:紫外激光加工硅盲孔是基于热、力效应共同作用的结果, 热效应会使得硅材料熔化、气化甚至发生电离产生激光等离子体,为材料的去除提供条件;激光等离子体冲击波以及高温气态物向外膨胀会对熔化材料产生压力致使其向外喷射,为重复脉冲的进一步烧蚀提供了条件;力效应主要沿着激光传输的方向,垂直于硅表面,使得去除部位主要集中在孔的深度方向,达到较高的孔径比,实验观察孔径比可达8:1;此外,激光等离子体的产生也阻止了激光对靶面的作用,加之随孔深的增加激光发生散焦,使得烧蚀深度有一定的限制,实验观察烧蚀脉冲个数在前100个时加工效率较高.
    The blind holes processing experiment is conducted on the silicon under the radiation of a 355 nm nanosecond UV repetitive pulse laser. With the increase of the laser pulse number, the variations of the silicon morphology,the depth and aperture of the blind holes are observed, and the thermodynamic process of UV laser irradiating silicon is analyzed. The results show that the formation of the blind silicon hole in the laser ablation process is due to the interaction between thermal effect and force effect. Thermal effect results in fusion, vaporization and even producing laser plasma by ionization in silicon, which is essential to the removal of the material. The molten material is compressed by the plasma shock wave and the expansion of the high-temperature gaseous material,and then ejection outward, which will benefit the further ablation; the force propagates along the laser transmission direction,perpendicular to the silicon surface, so the removal parts are distributed mainly along the depth direction of the hole, reaching a high aperture ratio, which is up to 8:1 in our experiments. In addition, the laser-induced plasma also prevents the effect of laser on the target surface, and with the increase of hole depth, laser defocusing occurs. The two aspects finally restrict the ablation depth. The results shows that in the process of laser irradiation on the material, the ablation efficiency is much higher when the former 100 pulses arrived than the sequent laser pulses.
    • 基金项目: 国家自然科学基金重大项目(批准号: 60890203)、 西南科技大学极端条件物质特性实验室开放基金(批准号: 11zxjk08)和四川大学青年教师科研启动基金(批准号: 2009SCU1108)资助的课题.
    • Funds: Project supported by the Major Program of the National Natural Science Foundation of China (Grant No.60890203), the Open Foundation of Laboratory for Extreme Conditions Matter Properties (Grant No.11zxjk08) and the Research fund for the Young Teachers of Sichuan University, China (Grant No.2009SCU11008).
    [1]

    Norton J F Google Patents 3265855 [1966-08-09]

    [2]

    Young D J 2010 VLSI Design Automation and Test (VLSI-DAT), 2010 International Symposium on Salt Lake City, UT, USA, April 26—29, 2010, p130

    [3]

    Oita T 2009 Ultrasonics Symposium (IUS), 2009 IEEE International Tokyo, Japan, September 20—23, 2009, p1173

    [4]

    Bäuerle D 2011 Laser processing and chemistry (2nd Ed.) (Berlin and New York: Springer) p57

    [5]

    Steen W M, Mazumder J 1998 Laser material processing (2nd Ed.) (London and New York: Springer) p121

    [6]

    Simon P, Ihlemann J 1996 Appl. Phys. A: Mater. Sci. Proc. 63 505

    [7]

    Niino H, Kawaguchi Y, Sato T, Narazaki A, Gumpenberger T, Kurosaki R 2006 J. Laser Micro/Nanoeng 1 39

    [8]

    Pfleging W, Bernauer W, Hanemann T, Torge M 2002 Microsyst. Technol. 9 67

    [9]

    Zhu L H 2008 China construction dynamic: the sun energy 35 (in Chinese) [朱黎辉 2008 中国建设动态: 阳光能源 35]

    [10]

    Landgraf R, Rieske R, Danilewsky A,Wolter K J 2008 Electronics System-Integration Technology Conference Dresden, Dresden, Sept 1—4, 2008 p1023

    [11]

    Lee Y H, Choi K J 2010 Int. J. Pres. Eng. Man. 11 501

    [12]

    Brandi F, Burdet N, Carzino R, Diaspro A 2010 Opt. Express 18 23488

    [13]

    Herrmann R, Gerlach J, Campbell E 1998 Appl. Phys. A: Mater. Sci. Proc. 66 35

    [14]

    Allman 1994 Laser-beam interactions with materials physical principles and applications (Beijing: Science Press) p55 (in Chinese) [奥尔曼 1994 激光束与材料相互作用的物理原理及应用 (北京:科学出版社) 第55页]

    [15]

    Wakaki M, Kudo K,Shibuya T 2007 Physical properties and data of optical materials (1st Ed.) (California: CRC press) p86

    [16]

    Tao S, Wu B, Zhou Y, Gao Y 2009 J. Appl. Phys. 106 123505

    [17]

    Weber M J 2003 Handbook Of Optical Materials (1st Ed.) (California: CRC press) p145

    [18]

    D'Anna E, Luby S, Luches A, Majkova E, Martino M 1993 Appl. Phys. A: Mater. Sci. Proc. 56 429

    [19]

    Zhang L, Ni X W, Lu J, Liu J, Dai G 2011 Opt. Precis. Eng. 19 437 (in Chinese) [张梁, 倪晓武, 陆建, 刘剑, 戴罡 2011 光学精密工程 19 437]

    [20]

    Kodama R, Norreys P, Mima K, Dangor A, Evans R, Fujita H, Kitagawa Y, Krusheinick K, Miyakoshi T, Miyanaga N 2001 Nature 412 798

    [21]

    Durfee C G, Lynch J, Milchberg H 1995 Phys. Rev. E 51 2368

    [22]

    Phipps C, Turner T, Harrison R, York G, Osborne W, Anderson G, Corlis X, Haynes L, Steele H, Spicochi K 1988 J. Appl. Phys. 64 1083

    [23]

    Ren J 2005 Ph. D. Dissertation (California: stanford university)

    [24]

    Lu J Ni X W 1996Laser interactions with materials physics (1st Ed.) (Beijing: China Machine Press) p69 (in Chinese) [陆建, 倪晓武 1996 激光与材料相互作用物理学(北京:机械工业出版社) 第69页]

    [25]

    Ancona A, Sibillano T, Lugará P M, Gonnella G, Pascazio G, Maffione D 2006 J. Phys. D: Appl. Phys. 39 563

    [26]

    Dykhno I, Ignatchenko G, Bogachenkov E European Patent EP20000943390 [2002-06-12]

    [27]

    Armon E, Zvirin Y, Laufer G, Solan A 1989 J. Appl. Phys. 65 4995

    [28]

    Park K W, Na S J 2010 Appl. Surf. Sci. 256 2392

    [29]

    Modest M F 2006 Journal of Heat Transfer 128 653

    [30]

    Tao S, Wu B, Zhou Y, Gao Y 2009 J. Appl. Phys. 106 123507

    [31]

    Chen J K, Beraun J E 2003 J. Opt. A: Pure Appl. Op. 5 168

    [32]

    Pakhomov A, Thompson M, Gregory D 2003 J. Phys. D: Appl. Phys. 36 2067

    [33]

    Schaffer C B, Brodeur A, Mazur E 2001 Meas. Sci. Technol. 12 1784

    [34]

    Ngoi B, Venkatakrishnan K, Lim E, Tan B, Koh L 2001 Opt. Laser. Eng. 35 361

    [35]

    Zhang N, Zhu X, Yang J, Wang X, Wang M 2007 Phys. Rev. Lett. 99 167602

    [36]

    Perez D, Lewis L 2004 Appl. Phys. A: Mater. 79 987

    [37]

    Lorazo P, Lewis L J, Meunier M 2003 Phys. Rev. Lett. 91 225502

  • [1]

    Norton J F Google Patents 3265855 [1966-08-09]

    [2]

    Young D J 2010 VLSI Design Automation and Test (VLSI-DAT), 2010 International Symposium on Salt Lake City, UT, USA, April 26—29, 2010, p130

    [3]

    Oita T 2009 Ultrasonics Symposium (IUS), 2009 IEEE International Tokyo, Japan, September 20—23, 2009, p1173

    [4]

    Bäuerle D 2011 Laser processing and chemistry (2nd Ed.) (Berlin and New York: Springer) p57

    [5]

    Steen W M, Mazumder J 1998 Laser material processing (2nd Ed.) (London and New York: Springer) p121

    [6]

    Simon P, Ihlemann J 1996 Appl. Phys. A: Mater. Sci. Proc. 63 505

    [7]

    Niino H, Kawaguchi Y, Sato T, Narazaki A, Gumpenberger T, Kurosaki R 2006 J. Laser Micro/Nanoeng 1 39

    [8]

    Pfleging W, Bernauer W, Hanemann T, Torge M 2002 Microsyst. Technol. 9 67

    [9]

    Zhu L H 2008 China construction dynamic: the sun energy 35 (in Chinese) [朱黎辉 2008 中国建设动态: 阳光能源 35]

    [10]

    Landgraf R, Rieske R, Danilewsky A,Wolter K J 2008 Electronics System-Integration Technology Conference Dresden, Dresden, Sept 1—4, 2008 p1023

    [11]

    Lee Y H, Choi K J 2010 Int. J. Pres. Eng. Man. 11 501

    [12]

    Brandi F, Burdet N, Carzino R, Diaspro A 2010 Opt. Express 18 23488

    [13]

    Herrmann R, Gerlach J, Campbell E 1998 Appl. Phys. A: Mater. Sci. Proc. 66 35

    [14]

    Allman 1994 Laser-beam interactions with materials physical principles and applications (Beijing: Science Press) p55 (in Chinese) [奥尔曼 1994 激光束与材料相互作用的物理原理及应用 (北京:科学出版社) 第55页]

    [15]

    Wakaki M, Kudo K,Shibuya T 2007 Physical properties and data of optical materials (1st Ed.) (California: CRC press) p86

    [16]

    Tao S, Wu B, Zhou Y, Gao Y 2009 J. Appl. Phys. 106 123505

    [17]

    Weber M J 2003 Handbook Of Optical Materials (1st Ed.) (California: CRC press) p145

    [18]

    D'Anna E, Luby S, Luches A, Majkova E, Martino M 1993 Appl. Phys. A: Mater. Sci. Proc. 56 429

    [19]

    Zhang L, Ni X W, Lu J, Liu J, Dai G 2011 Opt. Precis. Eng. 19 437 (in Chinese) [张梁, 倪晓武, 陆建, 刘剑, 戴罡 2011 光学精密工程 19 437]

    [20]

    Kodama R, Norreys P, Mima K, Dangor A, Evans R, Fujita H, Kitagawa Y, Krusheinick K, Miyakoshi T, Miyanaga N 2001 Nature 412 798

    [21]

    Durfee C G, Lynch J, Milchberg H 1995 Phys. Rev. E 51 2368

    [22]

    Phipps C, Turner T, Harrison R, York G, Osborne W, Anderson G, Corlis X, Haynes L, Steele H, Spicochi K 1988 J. Appl. Phys. 64 1083

    [23]

    Ren J 2005 Ph. D. Dissertation (California: stanford university)

    [24]

    Lu J Ni X W 1996Laser interactions with materials physics (1st Ed.) (Beijing: China Machine Press) p69 (in Chinese) [陆建, 倪晓武 1996 激光与材料相互作用物理学(北京:机械工业出版社) 第69页]

    [25]

    Ancona A, Sibillano T, Lugará P M, Gonnella G, Pascazio G, Maffione D 2006 J. Phys. D: Appl. Phys. 39 563

    [26]

    Dykhno I, Ignatchenko G, Bogachenkov E European Patent EP20000943390 [2002-06-12]

    [27]

    Armon E, Zvirin Y, Laufer G, Solan A 1989 J. Appl. Phys. 65 4995

    [28]

    Park K W, Na S J 2010 Appl. Surf. Sci. 256 2392

    [29]

    Modest M F 2006 Journal of Heat Transfer 128 653

    [30]

    Tao S, Wu B, Zhou Y, Gao Y 2009 J. Appl. Phys. 106 123507

    [31]

    Chen J K, Beraun J E 2003 J. Opt. A: Pure Appl. Op. 5 168

    [32]

    Pakhomov A, Thompson M, Gregory D 2003 J. Phys. D: Appl. Phys. 36 2067

    [33]

    Schaffer C B, Brodeur A, Mazur E 2001 Meas. Sci. Technol. 12 1784

    [34]

    Ngoi B, Venkatakrishnan K, Lim E, Tan B, Koh L 2001 Opt. Laser. Eng. 35 361

    [35]

    Zhang N, Zhu X, Yang J, Wang X, Wang M 2007 Phys. Rev. Lett. 99 167602

    [36]

    Perez D, Lewis L 2004 Appl. Phys. A: Mater. 79 987

    [37]

    Lorazo P, Lewis L J, Meunier M 2003 Phys. Rev. Lett. 91 225502

  • [1] 陆云杰, 陶弢, 赵斌, 郑坚. 激光烧蚀固体碳氢材料的离子组分分离研究. 物理学报, 2023, 72(7): 075201. doi: 10.7498/aps.72.20230013
    [2] 周毛吉, 李亚举, 钱东斌, 叶晓燕, 林平, 马新文. 粒径对激光驱动颗粒溅射动力学特征的影响. 物理学报, 2022, 71(14): 145203. doi: 10.7498/aps.71.20220243
    [3] 叶浩, 黄印博, 王琛, 刘国荣, 卢兴吉, 曹振松, 黄尧, 齐刚, 梅海平. 激光烧蚀-吸收光谱测量铀同位素比实验研究. 物理学报, 2021, 70(16): 163201. doi: 10.7498/aps.70.20210193
    [4] 罗乐乐, 窦志国, 叶继飞. 掺杂红外染料聚叠氮缩水甘油醚工质激光烧蚀推进性能优化探索. 物理学报, 2018, 67(18): 187901. doi: 10.7498/aps.67.20180479
    [5] 白清顺, 张凯, 沈荣琦, 张飞虎, 苗心向, 袁晓东. 单晶铁金属表面污染物的激光烧蚀机理. 物理学报, 2018, 67(23): 234401. doi: 10.7498/aps.67.20180999
    [6] 蔡颂, 陈根余, 周聪, 周枫林, 李光. 脉冲激光烧蚀材料等离子体反冲压力物理模型研究与应用. 物理学报, 2017, 66(13): 134205. doi: 10.7498/aps.66.134205
    [7] 段兴跃, 李小康, 程谋森, 李干. 激光烧蚀掺杂金属聚合物羽流屏蔽特性数值研究. 物理学报, 2016, 65(19): 197901. doi: 10.7498/aps.65.197901
    [8] 康小卫, 陈龙, 陈洁, 盛政明. 大气环境下飞秒激光对铝靶烧蚀过程的研究. 物理学报, 2016, 65(5): 055204. doi: 10.7498/aps.65.055204
    [9] 李干, 程谋森, 李小康. 激光烧蚀聚甲醛的热-化学耦合模型及其验证. 物理学报, 2014, 63(10): 107901. doi: 10.7498/aps.63.107901
    [10] 朱敏, 李晓红, 李国强, 常利阳, 谢长鑫, 邱荣, 李家文, 黄文浩. 飞秒脉冲激光辐照对硅发光性能的影响. 物理学报, 2014, 63(5): 057801. doi: 10.7498/aps.63.057801
    [11] 刘慎业, 黄翼翔, 胡昕, 张继彦, 杨国洪, 李军, 易荣清, 杜华冰, 丁永坤. 高强度二倍频激光辐照银薄膜靶的烧蚀和X光辐射实验研究. 物理学报, 2013, 62(3): 035202. doi: 10.7498/aps.62.035202
    [12] 常浩, 金星, 陈朝阳. 纳秒激光烧蚀冲量耦合数值模拟. 物理学报, 2013, 62(19): 195203. doi: 10.7498/aps.62.195203
    [13] 司丽娜, 郭丹, 雒建斌. 氧化硅团簇切削单晶硅粗糙峰的分子动力学模拟研究. 物理学报, 2012, 61(16): 168103. doi: 10.7498/aps.61.168103
    [14] 田嘉彤, 冯仕猛, 王坤霞, 徐华天, 杨树泉, 刘峰, 黄建华, 裴俊. 新型添加剂对单晶硅表面金字塔形貌的影响. 物理学报, 2012, 61(6): 066803. doi: 10.7498/aps.61.066803
    [15] 陈安民, 高勋, 姜远飞, 丁大军, 刘航, 金明星. 数值模拟飞秒激光加热金属的热电子发射. 物理学报, 2010, 59(10): 7198-7202. doi: 10.7498/aps.59.7198
    [16] 刘世炳, 刘院省, 何润, 陈涛. 纳秒激光诱导铜等离子体中原子激发态 5s' 4D7/2的瞬态特性研究. 物理学报, 2010, 59(8): 5382-5386. doi: 10.7498/aps.59.5382
    [17] 郑新亮, 李广山, 钟寿仙, 田进寿, 李振红, 任兆玉. 激光烧蚀对碳纳米管薄膜场发射性能的影响. 物理学报, 2008, 57(12): 7912-7918. doi: 10.7498/aps.57.7912
    [18] 黄庆举. 激光烧蚀金属Al诱导发光的动力学研究. 物理学报, 2008, 57(4): 2314-2319. doi: 10.7498/aps.57.2314
    [19] 成金秀, 郑志坚, 陈红素, 缪文勇, 陈 波, 王耀梅, 胡 昕. 1.06μm 激光直接驱动烧蚀靶内爆压缩特性. 物理学报, 2004, 53(10): 3419-3423. doi: 10.7498/aps.53.3419
    [20] 张树东, 李海洋. 激光烧蚀Al热原子与CF4反应中C2的形成及其发光光谱研究. 物理学报, 2003, 52(5): 1297-1301. doi: 10.7498/aps.52.1297
计量
  • 文章访问数:  7394
  • PDF下载量:  584
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-03
  • 修回日期:  2012-04-17

/

返回文章
返回