搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微型电子回旋共振离子推力器离子源结构优化实验研究

汤明杰 杨涓 金逸舟 罗立涛 冯冰冰

引用本文:
Citation:

微型电子回旋共振离子推力器离子源结构优化实验研究

汤明杰, 杨涓, 金逸舟, 罗立涛, 冯冰冰

Experimental optimization in ion source configuration of a miniature electron cyclotron resonance ion thruster

Tang Ming-Jie, Yang Juan, Jin Yi-Zhou, Luo Li-Tao, Feng Bing-Bing
PDF
导出引用
  • 微型电子回旋共振(ECR)离子推力器可满足微小航天器空间探测的推进需求. 为此, 本文开展直径20 mm的微型ECR离子源结构优化实验研究. 根据放电室内静磁场和ECR谐振区的分布特点, 研究不同微波耦合输入位置对离子源性能的影响, 结果表明环形天线处在高于ECR谐振强度的强磁场区域时, 微波与等离子体实现无损耦合, 电子共振加热效果显著, 引出离子束流较大. 根据放电室电磁截止特性, 结合微波电场计算, 研究放电容积对离子源性能的影响, 实验表明过长或过短的腔体长度会导致引出离子束流下降甚至等离子体熄灭. 经优化后离子源性能测试表明, 在入射微波功率2.1 W、氩气流量14.9 μg/s下, 可引出离子束流5.4 mA, 气体放电损耗和利用率分别为389 W/A和15%.
    A miniature ion thruster has been proposed in recent years for a small propulsion system applied in space missions such as deep space exploration, precise high-stability attitude and position control. An electron cyclotron resonance (ECR) ion thruster is free from contamination and degradation of electron emission capacity and will offer a potentially longer thruster lifetime than that in the electron bombardment type. The microwave ECR ion source with a 20-mm diameter designed here consists of two annular permanent magnets (SmCo), ring coupling antenna and a grid system including screen and acceleration. For the ion source performance optimization, with a fixed magnetic structure, the antenna position and cavity length in the discharge chamber can be adjusted to strengthen electron ECR heating and increase ion beam extraction. According to the distribution of static magnetic field and the ECR layer measured by Gauss meter, three possible sizes of antenna position (L1) are set; depending on the cut-off characteristics of the discharge chamber and the distribution of microwave electric field calculated by finite element method, six candidate sizes of cavity length (L2) are set. By comparing the difference in plasma discharge and ion beam extraction, the optimal structure of ion source can be obtained. Experimental results show that for a given antenna position, there is a cavity length not too long or too short to extract the maximum ion beam. And the launch of microwave from strong magnetic field near ECR layer is conductive to lossless wave propagation in plasma and highly efficient electron ECR heating. To maintain a plasma in very low power and flow, the size combination of 0.6-mm in L1 and 5-mm in L2 is selected as the preferred structure. The performances of miniature ECR ion source, that is, ion beam current, discharge loss, propellant utilization efficiency, thrust and specific impulse are 5.4 mA, 389 W/A, 15%, 163 μup N and 1051 s, respectively, at an incident power of 2.1 W and argon flow of 14.9 μg/s.
      Corresponding author: Yang Juan, yangjuan@nwpu.edu.cn
    [1]

    Pencil E, Kamhawi H, Arrington L 2004 40m th AIAAFort Lauderdale, Florida, July 11-14, 2004 p2004-3455

    [2]

    Marcuccio S 2003 28m th IEPC Toulouse, France, March 17-21, 2003 p0241-0303

    [3]

    Yashko G J, Griffin G B, Hastings D E 1997 25m th IEPC Cleveland, Ohio, October27-31, 1997 p443-449

    [4]

    Wirz R, Gale M, Mueller J, Marrese C 2004 40m th AIAA Fort Lauderdale, Florida, July 11-14, 2004 p2004-4115

    [5]

    Felli D, Loeb H W, Schartner K H, Weis S, Kirmse D, Meyer B K, Kilinger R, Mueller H, Di Cara D M 2005 29m th IEPC Princeton, New Jersey, October 31-November 4, 2005 p2005-252

    [6]

    Taunay P C R, Bilen S G, Micci M M 2013 33m th IEPC Washington, DC, October 6-10, 2013 p2013-194

    [7]

    Koizumi H, Kuninaka H 2010 J. Propul. Power 26 601

    [8]

    Kuninaka H, Nishiyama K, Funaki I, Yamada T, Shimizu Y, Kawaguchi J 2007 J. Propul. Power 23 544

    [9]

    Kuninaka H, Nishiyama K, Funaki I 2006 IEEE T. Plasma Sci. 34 2125

    [10]

    Kawahara H 2015 Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium, Hyogo-Kobe, Japan, July4-10, 2015 p2015-b-18-s

    [11]

    Yang J, Shi F, Yang T L, Meng Z Q 2010 Acta Phys. Sin. 59 8701 (in Chinese) [杨涓, 石峰, 杨铁链, 孟志强 2010 物理学报 59 8701]

    [12]

    Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901 (in Chinese) [陈茂林, 夏广庆, 毛根旺 2014 物理学报 63 182901]

    [13]

    Goebel D M, Katz I 2008 Fundamentals of Electric Propulsion Ion and Hall Thrusters (Hoboken: John Wiley and Sons) pp196-198

    [14]

    Lieberman M A, Lichetenberg A J 1994 Principles of Plasma Discharges and Materials Processing (New York: John Wiley and Sons) p491

    [15]

    Yang J, Shi F, Jin Y Z, Wang Y M, Komurasaki K 2013 Phys. Plasma 20 123505

    [16]

    Yamamoto N, Masui H, Kataharada H, Nakashima H 2006 J. Propul. Power 22 925

    [17]

    Stix T H 1992 Waves in Plasma(New York: Springer-Verlag) pp26-29

  • [1]

    Pencil E, Kamhawi H, Arrington L 2004 40m th AIAAFort Lauderdale, Florida, July 11-14, 2004 p2004-3455

    [2]

    Marcuccio S 2003 28m th IEPC Toulouse, France, March 17-21, 2003 p0241-0303

    [3]

    Yashko G J, Griffin G B, Hastings D E 1997 25m th IEPC Cleveland, Ohio, October27-31, 1997 p443-449

    [4]

    Wirz R, Gale M, Mueller J, Marrese C 2004 40m th AIAA Fort Lauderdale, Florida, July 11-14, 2004 p2004-4115

    [5]

    Felli D, Loeb H W, Schartner K H, Weis S, Kirmse D, Meyer B K, Kilinger R, Mueller H, Di Cara D M 2005 29m th IEPC Princeton, New Jersey, October 31-November 4, 2005 p2005-252

    [6]

    Taunay P C R, Bilen S G, Micci M M 2013 33m th IEPC Washington, DC, October 6-10, 2013 p2013-194

    [7]

    Koizumi H, Kuninaka H 2010 J. Propul. Power 26 601

    [8]

    Kuninaka H, Nishiyama K, Funaki I, Yamada T, Shimizu Y, Kawaguchi J 2007 J. Propul. Power 23 544

    [9]

    Kuninaka H, Nishiyama K, Funaki I 2006 IEEE T. Plasma Sci. 34 2125

    [10]

    Kawahara H 2015 Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium, Hyogo-Kobe, Japan, July4-10, 2015 p2015-b-18-s

    [11]

    Yang J, Shi F, Yang T L, Meng Z Q 2010 Acta Phys. Sin. 59 8701 (in Chinese) [杨涓, 石峰, 杨铁链, 孟志强 2010 物理学报 59 8701]

    [12]

    Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901 (in Chinese) [陈茂林, 夏广庆, 毛根旺 2014 物理学报 63 182901]

    [13]

    Goebel D M, Katz I 2008 Fundamentals of Electric Propulsion Ion and Hall Thrusters (Hoboken: John Wiley and Sons) pp196-198

    [14]

    Lieberman M A, Lichetenberg A J 1994 Principles of Plasma Discharges and Materials Processing (New York: John Wiley and Sons) p491

    [15]

    Yang J, Shi F, Jin Y Z, Wang Y M, Komurasaki K 2013 Phys. Plasma 20 123505

    [16]

    Yamamoto N, Masui H, Kataharada H, Nakashima H 2006 J. Propul. Power 22 925

    [17]

    Stix T H 1992 Waves in Plasma(New York: Springer-Verlag) pp26-29

  • [1] 付瑜亮, 张思远, 杨谨远, 孙安邦, 王亚楠. 微波离子推力器中磁场发散区电子加热模式研究. 物理学报, 2024, 73(9): 095203. doi: 10.7498/aps.73.20240017
    [2] 李向富, 朱晓禄, 蒋刚. 等离子体对电子间相互作用的屏蔽效应研究. 物理学报, 2023, 72(7): 073102. doi: 10.7498/aps.72.20222339
    [3] 付瑜亮, 杨涓, 夏旭, 孙安邦. 放电室长度对电子回旋共振离子推力器性能的影响机理. 物理学报, 2023, 72(17): 175204. doi: 10.7498/aps.72.20230719
    [4] 赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣. 等离子体对石墨烯的功能化改性. 物理学报, 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [5] 邹秀, 刘惠平, 张小楠, 邱明辉. 具有非广延分布电子的碰撞等离子体磁鞘的结构. 物理学报, 2021, 70(1): 015201. doi: 10.7498/aps.70.20200794
    [6] 赵晓云, 张丙开, 王春晓, 唐义甲. 电子的非广延分布对等离子体鞘层中二次电子发射的影响. 物理学报, 2019, 68(18): 185204. doi: 10.7498/aps.68.20190225
    [7] 刘明伟, 龚顺风, 李劲, 姜春蕾, 张禹涛, 周并举. 低密等离子体通道中的非共振激光直接加速. 物理学报, 2015, 64(14): 145201. doi: 10.7498/aps.64.145201
    [8] 王林, 夏智勋, 罗振兵, 周岩, 张宇. 两电极等离子体合成射流激励器工作特性研究. 物理学报, 2014, 63(19): 194702. doi: 10.7498/aps.63.194702
    [9] 高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟. 微小碎片加速器同轴枪内等离子体轴向速度研究. 物理学报, 2012, 61(14): 145201. doi: 10.7498/aps.61.145201
    [10] 董太源, 叶坤涛, 刘维清. 表面波等离子体源的发展现状. 物理学报, 2012, 61(14): 145202. doi: 10.7498/aps.61.145202
    [11] 刘惠平, 邹秀, 邹滨雁, 邱明辉. 电负性等离子体磁鞘的玻姆判据. 物理学报, 2012, 61(3): 035201. doi: 10.7498/aps.61.035201
    [12] 安治永, 李应红, 吴 云, 苏长兵, 宋慧敏. 对称等离子体激励器系统电场仿真研究. 物理学报, 2007, 56(8): 4778-4784. doi: 10.7498/aps.56.4778
    [13] 田杨萌, 王彩霞, 姜 明, 程新路, 杨向东. 惰性物质等离子体物态方程研究. 物理学报, 2007, 56(10): 5698-5703. doi: 10.7498/aps.56.5698
    [14] 盛正卯, 王 庸, 马 健, 郑思波. 静电波对磁化等离子体的共振加热的理论及数值模拟研究. 物理学报, 2006, 55(3): 1301-1306. doi: 10.7498/aps.55.1301
    [15] 刘少斌, 朱传喜, 袁乃昌. 等离子体光子晶体的FDTD分析. 物理学报, 2005, 54(6): 2804-2808. doi: 10.7498/aps.54.2804
    [16] 张永辉, 江金生, 常安碧. 空心阴极等离子体电子枪研究. 物理学报, 2003, 52(7): 1676-1681. doi: 10.7498/aps.52.1676
    [17] 唐昌建, 钱尚介. 离子通道回旋电子注受激辐射非线性理论. 物理学报, 2002, 51(6): 1256-1261. doi: 10.7498/aps.51.1256
    [18] 张军, 张杰, 陈清, 彭练矛, 苍宇, 王怀斌, 仲佳勇. 利用飞秒激光等离子体产生的超热电子进行衍射实验的可行性研究. 物理学报, 2002, 51(8): 1764-1767. doi: 10.7498/aps.51.1764
    [19] 傅喜泉, 刘承宜, 郭弘. 等离子体中X射线激光传输与电子密度诊断的理论及数值比较. 物理学报, 2002, 51(6): 1326-1331. doi: 10.7498/aps.51.1326
    [20] 何斌, 常铁强, 张家泰, 许林宝. 超强激光场等离子体中电子纵向运动的研究. 物理学报, 2001, 50(10): 1939-1945. doi: 10.7498/aps.50.1939
计量
  • 文章访问数:  6305
  • PDF下载量:  246
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-07
  • 修回日期:  2015-06-30
  • 刊出日期:  2015-11-05

/

返回文章
返回