-
作为一种新型高效质子交换膜燃料电池阴极材料, 金属与N共掺杂的石墨烯因其对氧还原反应具有较高的活性而引起了人们的广泛关注. 采用包含色散力校正的密度泛函理论方法系统地研究了O2在TiN4掺杂的Graphene上的吸附, 氢化特性. 结果表明: 1) O2倾向于以side-on模式吸附在Ti顶位, 形成O-Ti-O三元环结构; 2) O2在TiN4-Graphene上更倾向于以分子形式直接氢化, 形式OOH结构, 并进一步解离为O+OH, 反应的限速步为O2的氢化, 对应的反应势垒为0.52 eV.
-
关键词:
- TiN4掺杂的Graphene /
- O2氢化 /
- 第一性原理
As a kind of clean and high efficient energy conversion devices, the proton exchange membrane fuel cell (PEMFC) is a promising technology for clean and sustainable power generation. Metal-coordinated nitrogen-doped graphene is attractive since its use as a cathode material for the PEMFC. The mechanism of O2 activation and hydrogenation on TiN4 embedded graphene has been investigated in terms of the dispersion-corrected density functional theory (DFT-D) method. It is found that: 1) O2 prefers to stay on top of the Ti atom with the side-on configuration, forming the O-Ti-O three-member ring with an adsorption energy of 4.96 eV. 2) According to the Mulliken atomic charges analysis, the absorbed O2 molecule are negatively charged by 0.60 e in the side-on configuration. 3) Upon the chemisorption of the O2 on TiN4-graphene, there are two possible pathways during the activation of the O2 molecule: dissociation and hydrogenation. In the dissociation pathway, the adsorbed O2 molecule is first dissociated into two O atoms, with a fairly big reaction barrier of 0.95 eV and an endothermic reaction energy of 0.20 eV. Subsequently, the two O atoms are hydrogenated into O+OH with a reaction barrier of 0.40 eV and an exothermic reaction energy of 2.46 eV. In the hydrogenation pathway, the reaction barrier of the hydrogenation of the adsorbed O2 is 0.52 eV. The OOH formed subsequently is dissociated into O+OH with a small reaction barrier of 0.04 eV and an exothermic reaction of 2.14 eV. The hydrogenation pathways of the adsorbed O2 is more preferable, and the corresponding rate-limiting step of this pathway is the hydrogenation of the O2 with a reaction barrier of 0.52 eV and an exothermic reaction energy of 0.64 eV.#br#In summary, the preferable path of the hydrogenation reactions of O2 on TiN4-Graphene is O2(ads)+H(ads) → OOH(ads)→O+OH(ads). Current results may be benefitial to the design of new electrocatalyst materials based on graphene.-
Keywords:
- TiN4 embedded graphene /
- hydrogenation of O2 /
- first-principles study
[1] Steele B C H, Heinzel A 2001 Nature 414 345
[2] Brumfiel G 2003 Nature 422 104
[3] Bashyam R, Zelenay P 2006 Nature 443 63
[4] Greeley J, Stephens I E L, Bondarenko A S, Johansson T P, Hansen H A, Jaramillo T F, Rossmeisl J, Chorkendorff I, N 鴕 skov J K 2009 Nat. Chem. 1 552
[5] Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红 2012 物理学报 61 248502]
[6] Gupta S, Tryk D, Bae I, Aldred W, Yeager E 1989 J. Appl. Electrochem. 19 19
[7] Bezerra C W B, Zhang L, Lee K, Liu H, Marques A L B, Marques E P, Wang H, Zhang J 2008 Electrochim. Acta 53 4937
[8] Lee D H, Lee W J, Lee W J, Kim S O, Kim Y H 2011 Phys. Rev. Lett. 106 175502
[9] Tan H G 2014 Acta Phys. Sin. 63 046102 (in Chinese) [高潭华 2014 物理学报 63 046102]
[10] Kattel S, Atanassov P, Kiefer B 2013 Phys. Chem. Chem. Phys. 15 148
[11] Calle-Vallejo F, Martinez J I, Rossmeisl J 2011 Phys. Chem. Chem. Phys. 13 15639
[12] Yang G M, Xu Q, Li B, Zhang H Z, He X G 2015 Acta Phys. Sin. 64 127301 (in Chinese) [杨光敏, 徐强, 李冰, 张汉壮, 贺小光 2015 物理学报 64 127301]
[13] Orellana W 2013 J. Phys. Chem. C 117 9812
[14] Zhang J, Wang Z J, Zhu Z P 2014 J. Power Sources 255 65
[15] Lu Z S, Xu G L, He C Z, Wang T X, Yang L, Yang Z X, Ma D W 2015 Carbon 84 500
[16] Bouwkamp-Wijnoltz A L, Visscher W, van Veen J A R, Tang S C 1999 Electrochim. Acta 45 379
[17] Sun J, Fang Y H, Liu Z P 2014 Phys. Chem. Chem. Phys. 16 13733
[18] Fernández J L, Raghuveer V, Manthiram A, Bard A J 2005 J. Am. Chem. Soc. 127 13100
[19] Chen J, Takanabe K, Ohnishi R, Lu D, Okada S, Hatasawa H, Morioka H, Antonietti M, Kubota J, Domen K 2010 Chem. Commun. 46 7492
[20] Delley B 1990 J. Chem. Phys. 92 508
[21] Delley B 2000 J. Chem. Phys. 113 7756
[22] Delley B 2002 Phys. Rev. B 66 155125
[23] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[24] Kattel S, Wang G 2014 J. Phys. Chem. Lett. 5 452
-
[1] Steele B C H, Heinzel A 2001 Nature 414 345
[2] Brumfiel G 2003 Nature 422 104
[3] Bashyam R, Zelenay P 2006 Nature 443 63
[4] Greeley J, Stephens I E L, Bondarenko A S, Johansson T P, Hansen H A, Jaramillo T F, Rossmeisl J, Chorkendorff I, N 鴕 skov J K 2009 Nat. Chem. 1 552
[5] Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红 2012 物理学报 61 248502]
[6] Gupta S, Tryk D, Bae I, Aldred W, Yeager E 1989 J. Appl. Electrochem. 19 19
[7] Bezerra C W B, Zhang L, Lee K, Liu H, Marques A L B, Marques E P, Wang H, Zhang J 2008 Electrochim. Acta 53 4937
[8] Lee D H, Lee W J, Lee W J, Kim S O, Kim Y H 2011 Phys. Rev. Lett. 106 175502
[9] Tan H G 2014 Acta Phys. Sin. 63 046102 (in Chinese) [高潭华 2014 物理学报 63 046102]
[10] Kattel S, Atanassov P, Kiefer B 2013 Phys. Chem. Chem. Phys. 15 148
[11] Calle-Vallejo F, Martinez J I, Rossmeisl J 2011 Phys. Chem. Chem. Phys. 13 15639
[12] Yang G M, Xu Q, Li B, Zhang H Z, He X G 2015 Acta Phys. Sin. 64 127301 (in Chinese) [杨光敏, 徐强, 李冰, 张汉壮, 贺小光 2015 物理学报 64 127301]
[13] Orellana W 2013 J. Phys. Chem. C 117 9812
[14] Zhang J, Wang Z J, Zhu Z P 2014 J. Power Sources 255 65
[15] Lu Z S, Xu G L, He C Z, Wang T X, Yang L, Yang Z X, Ma D W 2015 Carbon 84 500
[16] Bouwkamp-Wijnoltz A L, Visscher W, van Veen J A R, Tang S C 1999 Electrochim. Acta 45 379
[17] Sun J, Fang Y H, Liu Z P 2014 Phys. Chem. Chem. Phys. 16 13733
[18] Fernández J L, Raghuveer V, Manthiram A, Bard A J 2005 J. Am. Chem. Soc. 127 13100
[19] Chen J, Takanabe K, Ohnishi R, Lu D, Okada S, Hatasawa H, Morioka H, Antonietti M, Kubota J, Domen K 2010 Chem. Commun. 46 7492
[20] Delley B 1990 J. Chem. Phys. 92 508
[21] Delley B 2000 J. Chem. Phys. 113 7756
[22] Delley B 2002 Phys. Rev. B 66 155125
[23] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[24] Kattel S, Wang G 2014 J. Phys. Chem. Lett. 5 452
计量
- 文章访问数: 5634
- PDF下载量: 359
- 被引次数: 0