搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第一性原理研究O2在TiN4掺杂石墨烯上的氢化

路战胜 李燕 程莹洁 李硕 张喜林 徐国亮 杨宗献

引用本文:
Citation:

第一性原理研究O2在TiN4掺杂石墨烯上的氢化

路战胜, 李燕, 程莹洁, 李硕, 张喜林, 徐国亮, 杨宗献

First-principles study on the hydrogenation of the O2 on TiN4 embedded graphene

Lu Zhan-Sheng, Li Yan, Cheng Ying-Jie, Li Shuo, Zhang Xi-Lin, Xu Guo-Liang, Yang Zong-Xian
PDF
导出引用
  • 作为一种新型高效质子交换膜燃料电池阴极材料, 金属与N共掺杂的石墨烯因其对氧还原反应具有较高的活性而引起了人们的广泛关注. 采用包含色散力校正的密度泛函理论方法系统地研究了O2在TiN4掺杂的Graphene上的吸附, 氢化特性. 结果表明: 1) O2倾向于以side-on模式吸附在Ti顶位, 形成O-Ti-O三元环结构; 2) O2在TiN4-Graphene上更倾向于以分子形式直接氢化, 形式OOH结构, 并进一步解离为O+OH, 反应的限速步为O2的氢化, 对应的反应势垒为0.52 eV.
    As a kind of clean and high efficient energy conversion devices, the proton exchange membrane fuel cell (PEMFC) is a promising technology for clean and sustainable power generation. Metal-coordinated nitrogen-doped graphene is attractive since its use as a cathode material for the PEMFC. The mechanism of O2 activation and hydrogenation on TiN4 embedded graphene has been investigated in terms of the dispersion-corrected density functional theory (DFT-D) method. It is found that: 1) O2 prefers to stay on top of the Ti atom with the side-on configuration, forming the O-Ti-O three-member ring with an adsorption energy of 4.96 eV. 2) According to the Mulliken atomic charges analysis, the absorbed O2 molecule are negatively charged by 0.60 e in the side-on configuration. 3) Upon the chemisorption of the O2 on TiN4-graphene, there are two possible pathways during the activation of the O2 molecule: dissociation and hydrogenation. In the dissociation pathway, the adsorbed O2 molecule is first dissociated into two O atoms, with a fairly big reaction barrier of 0.95 eV and an endothermic reaction energy of 0.20 eV. Subsequently, the two O atoms are hydrogenated into O+OH with a reaction barrier of 0.40 eV and an exothermic reaction energy of 2.46 eV. In the hydrogenation pathway, the reaction barrier of the hydrogenation of the adsorbed O2 is 0.52 eV. The OOH formed subsequently is dissociated into O+OH with a small reaction barrier of 0.04 eV and an exothermic reaction of 2.14 eV. The hydrogenation pathways of the adsorbed O2 is more preferable, and the corresponding rate-limiting step of this pathway is the hydrogenation of the O2 with a reaction barrier of 0.52 eV and an exothermic reaction energy of 0.64 eV.#br#In summary, the preferable path of the hydrogenation reactions of O2 on TiN4-Graphene is O2(ads)+H(ads) → OOH(ads)→O+OH(ads). Current results may be benefitial to the design of new electrocatalyst materials based on graphene.
      通信作者: 路战胜, zslu@henannu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51401078, 11474086)和河南省高校科技创新人才支持计划(批准号: 15 HASTIT016)资助的课题.
      Corresponding author: Lu Zhan-Sheng, zslu@henannu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51401078, 11474086), the Science & Technology Innovation Talents in Universities of Henan Province, China (Grant No. 15 HASTIT016).
    [1]

    Steele B C H, Heinzel A 2001 Nature 414 345

    [2]

    Brumfiel G 2003 Nature 422 104

    [3]

    Bashyam R, Zelenay P 2006 Nature 443 63

    [4]

    Greeley J, Stephens I E L, Bondarenko A S, Johansson T P, Hansen H A, Jaramillo T F, Rossmeisl J, Chorkendorff I, N 鴕 skov J K 2009 Nat. Chem. 1 552

    [5]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红 2012 物理学报 61 248502]

    [6]

    Gupta S, Tryk D, Bae I, Aldred W, Yeager E 1989 J. Appl. Electrochem. 19 19

    [7]

    Bezerra C W B, Zhang L, Lee K, Liu H, Marques A L B, Marques E P, Wang H, Zhang J 2008 Electrochim. Acta 53 4937

    [8]

    Lee D H, Lee W J, Lee W J, Kim S O, Kim Y H 2011 Phys. Rev. Lett. 106 175502

    [9]

    Tan H G 2014 Acta Phys. Sin. 63 046102 (in Chinese) [高潭华 2014 物理学报 63 046102]

    [10]

    Kattel S, Atanassov P, Kiefer B 2013 Phys. Chem. Chem. Phys. 15 148

    [11]

    Calle-Vallejo F, Martinez J I, Rossmeisl J 2011 Phys. Chem. Chem. Phys. 13 15639

    [12]

    Yang G M, Xu Q, Li B, Zhang H Z, He X G 2015 Acta Phys. Sin. 64 127301 (in Chinese) [杨光敏, 徐强, 李冰, 张汉壮, 贺小光 2015 物理学报 64 127301]

    [13]

    Orellana W 2013 J. Phys. Chem. C 117 9812

    [14]

    Zhang J, Wang Z J, Zhu Z P 2014 J. Power Sources 255 65

    [15]

    Lu Z S, Xu G L, He C Z, Wang T X, Yang L, Yang Z X, Ma D W 2015 Carbon 84 500

    [16]

    Bouwkamp-Wijnoltz A L, Visscher W, van Veen J A R, Tang S C 1999 Electrochim. Acta 45 379

    [17]

    Sun J, Fang Y H, Liu Z P 2014 Phys. Chem. Chem. Phys. 16 13733

    [18]

    Fernández J L, Raghuveer V, Manthiram A, Bard A J 2005 J. Am. Chem. Soc. 127 13100

    [19]

    Chen J, Takanabe K, Ohnishi R, Lu D, Okada S, Hatasawa H, Morioka H, Antonietti M, Kubota J, Domen K 2010 Chem. Commun. 46 7492

    [20]

    Delley B 1990 J. Chem. Phys. 92 508

    [21]

    Delley B 2000 J. Chem. Phys. 113 7756

    [22]

    Delley B 2002 Phys. Rev. B 66 155125

    [23]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [24]

    Kattel S, Wang G 2014 J. Phys. Chem. Lett. 5 452

  • [1]

    Steele B C H, Heinzel A 2001 Nature 414 345

    [2]

    Brumfiel G 2003 Nature 422 104

    [3]

    Bashyam R, Zelenay P 2006 Nature 443 63

    [4]

    Greeley J, Stephens I E L, Bondarenko A S, Johansson T P, Hansen H A, Jaramillo T F, Rossmeisl J, Chorkendorff I, N 鴕 skov J K 2009 Nat. Chem. 1 552

    [5]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红 2012 物理学报 61 248502]

    [6]

    Gupta S, Tryk D, Bae I, Aldred W, Yeager E 1989 J. Appl. Electrochem. 19 19

    [7]

    Bezerra C W B, Zhang L, Lee K, Liu H, Marques A L B, Marques E P, Wang H, Zhang J 2008 Electrochim. Acta 53 4937

    [8]

    Lee D H, Lee W J, Lee W J, Kim S O, Kim Y H 2011 Phys. Rev. Lett. 106 175502

    [9]

    Tan H G 2014 Acta Phys. Sin. 63 046102 (in Chinese) [高潭华 2014 物理学报 63 046102]

    [10]

    Kattel S, Atanassov P, Kiefer B 2013 Phys. Chem. Chem. Phys. 15 148

    [11]

    Calle-Vallejo F, Martinez J I, Rossmeisl J 2011 Phys. Chem. Chem. Phys. 13 15639

    [12]

    Yang G M, Xu Q, Li B, Zhang H Z, He X G 2015 Acta Phys. Sin. 64 127301 (in Chinese) [杨光敏, 徐强, 李冰, 张汉壮, 贺小光 2015 物理学报 64 127301]

    [13]

    Orellana W 2013 J. Phys. Chem. C 117 9812

    [14]

    Zhang J, Wang Z J, Zhu Z P 2014 J. Power Sources 255 65

    [15]

    Lu Z S, Xu G L, He C Z, Wang T X, Yang L, Yang Z X, Ma D W 2015 Carbon 84 500

    [16]

    Bouwkamp-Wijnoltz A L, Visscher W, van Veen J A R, Tang S C 1999 Electrochim. Acta 45 379

    [17]

    Sun J, Fang Y H, Liu Z P 2014 Phys. Chem. Chem. Phys. 16 13733

    [18]

    Fernández J L, Raghuveer V, Manthiram A, Bard A J 2005 J. Am. Chem. Soc. 127 13100

    [19]

    Chen J, Takanabe K, Ohnishi R, Lu D, Okada S, Hatasawa H, Morioka H, Antonietti M, Kubota J, Domen K 2010 Chem. Commun. 46 7492

    [20]

    Delley B 1990 J. Chem. Phys. 92 508

    [21]

    Delley B 2000 J. Chem. Phys. 113 7756

    [22]

    Delley B 2002 Phys. Rev. B 66 155125

    [23]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [24]

    Kattel S, Wang G 2014 J. Phys. Chem. Lett. 5 452

  • [1] 姜楠, 李奥林, 蘧水仙, 勾思, 欧阳方平. 应变诱导单层NbSi2N4材料磁转变的第一性原理研究. 物理学报, 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [2] 王小卡, 汤富领, 薛红涛, 司凤娟, 祁荣斐, 刘静波. H,Cl和F原子钝化Cu2ZnSnS4(112)表面态的第一性原理计算. 物理学报, 2018, 67(16): 166401. doi: 10.7498/aps.67.20180626
    [3] 丁超, 李卫, 刘菊燕, 王琳琳, 蔡云, 潘沛锋. Sb,S共掺杂SnO2电子结构的第一性原理分析. 物理学报, 2018, 67(21): 213102. doi: 10.7498/aps.67.20181228
    [4] 潘凤春, 徐佳楠, 杨花, 林雪玲, 陈焕铭. 非掺杂锐钛矿相TiO2铁磁性的第一性原理研究. 物理学报, 2017, 66(5): 056101. doi: 10.7498/aps.66.056101
    [5] 潘凤春, 林雪玲, 陈焕铭. C掺杂金红石相TiO2的电子结构和光学性质的第一性原理研究. 物理学报, 2015, 64(22): 224218. doi: 10.7498/aps.64.224218
    [6] 蒋先伟, 代广珍, 鲁世斌, 汪家余, 代月花, 陈军宁. Al掺杂对HfO2俘获层可靠性影响第一性原理研究. 物理学报, 2015, 64(9): 091301. doi: 10.7498/aps.64.091301
    [7] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究. 物理学报, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [8] 石瑜, 白洋, 莫丽玢, 向青云, 黄亚丽, 曹江利. H掺杂α-Fe2O3的第一性原理研究. 物理学报, 2015, 64(11): 116301. doi: 10.7498/aps.64.116301
    [9] 王涛, 陈建峰, 乐园. I掺杂金红石TiO2(110)面的第一性原理研究. 物理学报, 2014, 63(20): 207302. doi: 10.7498/aps.63.207302
    [10] 李宗宝, 王霞, 贾礼超. N/Fe共掺杂锐钛矿TiO2(101)面协同作用的第一性原理研究. 物理学报, 2013, 62(20): 203103. doi: 10.7498/aps.62.203103
    [11] 林玲, 朱家杰, 方弘. 金属离子掺杂的Lu2Si2O7的第一性原理研究. 物理学报, 2013, 62(14): 147101. doi: 10.7498/aps.62.147101
    [12] 曹娟, 崔磊, 潘靖. V,Cr,Mn掺杂MoS2磁性的第一性原理研究. 物理学报, 2013, 62(18): 187102. doi: 10.7498/aps.62.187102
    [13] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [14] 袁娣, 黄多辉, 罗华锋. Be, O共掺杂实现p型AlN的第一性原理研究. 物理学报, 2012, 61(14): 147101. doi: 10.7498/aps.61.147101
    [15] 袁娣, 罗华锋, 黄多辉, 王藩侯. Zn,O共掺杂实现p型AlN的第一性原理研究. 物理学报, 2011, 60(7): 077101. doi: 10.7498/aps.60.077101
    [16] 张易军, 闫金良, 赵刚, 谢万峰. Si掺杂β-Ga2O3的第一性原理计算与实验研究. 物理学报, 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [17] 张计划, 丁建文, 卢章辉. Co掺杂MgF2电子结构和光学特性的第一性原理研究. 物理学报, 2009, 58(3): 1901-1907. doi: 10.7498/aps.58.1901
    [18] 赵宗彦, 柳清菊, 张 瑾, 朱忠其. 3d过渡金属掺杂锐钛矿相TiO2的第一性原理研究. 物理学报, 2007, 56(11): 6592-6599. doi: 10.7498/aps.56.6592
    [19] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究. 物理学报, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
    [20] 潘志军, 张澜庭, 吴建生. 掺杂半导体β-FeSi2电子结构及几何结构第一性原理研究. 物理学报, 2005, 54(11): 5308-5313. doi: 10.7498/aps.54.5308
计量
  • 文章访问数:  5634
  • PDF下载量:  359
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-10
  • 修回日期:  2015-07-03
  • 刊出日期:  2015-11-05

/

返回文章
返回