-
载能离子入射带负电的离子收集沉积结构过程中会发生离子溅射,一种常用于离子加速过程的结构为圆形金属丝,持续大量离子入射会引起金属丝的表面损失,影响金属丝的服役性能及使用寿命。目前常用于计算溅射产额的SRIM软件由于无法考虑合金晶体结构中包含的多体相互作用问题,在高能离子入射合金靶材的溅射产额计算上具有较大误差;本文基于分子动力学方法结合Langevin控温模型建立了高能金属离子入射合金靶材的离子溅射参数计算模型,该模型具备持续入射过程中合金表面不同状态下的离子溅射参数计算功能,利用该模型计算得到了用于离子加速的阴极金属丝的典型服役寿命,试验值与理论值偏差<10%,验证了理论模型的准确性和适用性,基于此模型进行了金属丝服役寿命提升的理论优化,并提出了使用Ni-Ti合金提升金属丝寿命的方法。Ion sputtering will occur when energetic heavy ion incident ion collection and deposition structure with negative charge. Metal wire is a structure commonly used for ion acceleration processes, continuous high-throughput ion incidence can cause surface loss of metal wire, affecting the service performance and lifespan of the metal wire. The SRIM software commonly used for calculating sputtering yield, the multi-body interaction problem contained in the alloy crystal structure cannot be considered, however, so, there is a significant error in calculating the sputtering yield of high-energy ion incident alloy targets. Based on the Molecular Dynamics method and Langevin temperature control model, the calculation model of ion sputtering parameters of energetic metal ion incident alloy target is established. The model was used to calculate the sputtering yield under the conditions of intact surface lattice of the target material and long-term incident surface lattice damage. The damage of the cathode metal wire under different ion incident amounts was further calculated, and carried out the cross-sectional characterization of the metal wire under typical working condition. The results showed that the deviation between the experimental value and the theoretical value was less than 10%, which verified the accuracy and applicability of the theoretical model. Based on this model, proposed the search direction for sputtering resistant materials, meanwhile, carried out a theoretical method to improve the service life of the metal wire, which is of great significance for predicting the service life of the metal wire under different conditions.
-
Keywords:
- Heavy-energy ion sputtering /
- Molecular dynamics /
- Alloy target /
- Service life
-
[1] Tian M B, Cui F Z 1987 Phys. 17 177(in Chinese) [田民波,崔福斋 1987 物理 17 177]
[2] Zhang L, Zhang Z L 2006 Journal of Anhui Univ. of sci. and Tech. 26 69(in Chinese) [张莱,张竹林 2006 安徽理工大学学报26 69]
[3] Li T J, Cui S H, Liu L L, Li X Y, Wu Z X, Ma Z Y, Fu J Y, Tian X B, Zhu J H, Wu Z Z 2021 Acta Phys. Sin. 70 045202(in Chinese)[李体军,崔岁寒,刘亮亮 李晓渊,吴忠灿,马正永,傅劲裕,田修波,朱剑豪,吴忠振 2021 物理学报 70 045202]
[4] Chen C Z, Ma D L, Li Y D, Leng Y X 2021 Acta Phys. Sin. 70 180701(in Chinese)[陈畅子 马东林 李延涛 冷永祥 2021 物理学报 70 180701]
[5] Zhu H L, Wang D W 2022 Acta Phys. Sin. 51 1338(in Chinese)[朱红莲,王德武 2002 物理学报 51 1338]
[6] Xie F Q 2008 Acta Phys. Sin. 57 1784(in Chinese)[谢国锋 2008 物理学报 57 1784]
[7] Ziegler J F, M.D. Ziegler, Biersack J P. 2008 NIM-B 268 1818
[8] Sigmund P 1969 Phys. Rev. 184 383
[9] Shao Q Y, Huo Y K, Chen J X, Wu S M, Pan Z Y 1991 Acta Phys. Sin. 40 659(in Chinese)[邵其鋆,霍裕昆,陈建新,吴士明,潘正瑛 1991 物理学报 40 659]
[10] Nastja Mahne, Miha Cekada, Matjaž Panjan 2022 Coatings 12 1541
[11] Fan K Q, Jia J Y 2005 Micronanoelectronic Tech. 42 133(in Chinese)[樊康旗,贾建援2005 微纳电子技术 42 133]
[12] Lu H F, Zhang C, Zhang Q Y 2003 NIM-B 206 22
[13] Pastewka L, Salzer R, Graff A 2009 NIM-B 267 3072
[14] Jr M F R, Maazouz M, Giannuzzi L A 2008 Appl. Surf. Sci. 255 828
[15] Feil H,Zwol J,Zwart S T,Dieleman J 1991 Phys. Rev. B 43 13695
[16] Lopez-Cazalilla A, Cupak C, Fellinger M 2022 Phys. Rev. Materials 6 075402
[17] Plimpton S 1995 JCPH 117 1
[18] Tran H, Chew H B 2023 Carbon 205 180
[19] Yan C, Duan J H, He X D 2011 Acta Phys. Sin. 60 088301(in Chinese)[颜超段军红 何兴道 2011 物理学报 60 088301]
[20] Shuichi Nose 1984 JCP 81 511
[21] Slavinskaya N A 1998 Matem. Mod. 34 3
[22] Daw M S Foiles S M, Baskes M I 1993 Matl. Sci. Rep. 9 251
[23] Ziegler J F 1988 Ion Implantation Technology (Berlin, Heidelberg: Springer) pp122—156
[24] Yan C, Huang L L, He X D 2014 Acta Phys. Sin. 63 126801(in Chinese)[颜超,黄莉莉,何兴道 2014 物理学报 63 126801]
计量
- 文章访问数: 117
- PDF下载量: 3
- 被引次数: 0